首页> 外文会议>Radar Sensor Technology XXI >Optimization of Neural Network Architecture for Classification of Radar Jamming FM Signals
【24h】

Optimization of Neural Network Architecture for Classification of Radar Jamming FM Signals

机译:雷达干扰FM信号分类的神经网络架构优化

获取原文
获取原文并翻译 | 示例

摘要

The purpose of this study is to investigate several artificial Neural Network (NN) architectures in order to design a cognitive radar system capable of optimally distinguishing linear Frequency-Modulated (FM) signals from bandlimited Additive White Gaussian Noise (AWGN). The goal is to create a theoretical framework to determine an optimal NN architecture to achieve a Probability of Detection (PD) of 95% or higher and a Probability of False Alarm (PFA) of 1.5% or lower at 5 dB Signal to Noise Ratio (SNR). Literature research reveals that the frequency-domain power spectral densities characterize a signal more efficiently than its time-domain counterparts. Therefore, the input data is preprocessed by calculating the magnitude square of the Discrete Fourier Transform of the digitally sampled bandlimited AWGN and linear FM signals to populate a matrix containing N number of samples and M number of spectra. This matrix is used as input for the NN, and the spectra are divided as follows: 70% for training, 15% for validation, and 15% for testing. The study begins by experimentally deducing the optimal number of hidden neurons (1-40 neurons), then the optimal number of hidden layers (1-5 layers), and lastly, the most efficient learning algorithm. The training algorithms examined are: Resilient Backpropagation, Scaled Conjugate Gradient, Conjugate Gradient with Powell/Beale Restarts, Polak-Ribiere Conjugate Gradient, and Variable Learning Rate Backpropagation. We determine that an architecture with ten hidden neurons (or higher), one hidden layer, and a Scaled Conjugate Gradient for training algorithm encapsulates an optimal architecture for our application.
机译:本研究的目的是研究几种人工神经网络(NN)架构,以设计一种能够最佳地区分带限加性高斯白高斯噪声(AWGN)的线性调频(FM)信号的认知雷达系统。目标是创建一个理论框架,以确定在5 dB信噪比时实现95%或更高的检测概率(PD)和1.5%或更低的虚警概率(PFA)的最佳NN体系结构( SNR)。文献研究表明,频域功率谱密度比时域对应物更有效地表征信号。因此,通过计算数字采样带宽受限的AWGN和线性FM信号的离散傅立叶变换的幅度平方来预处理输入数据,以填充包含N个样本和M个光谱的矩阵。该矩阵用作NN的输入,光谱的划分如下:用于训练的70%,用于验证的15%和用于测试的15%。该研究首先通过实验得出隐藏神经元的最佳数量(1-40个神经元),然后得出隐藏层的最佳数量(1-5层),最后得出最有效的学习算法。检验的训练算法是:弹性反向传播,缩放共轭梯度,具有Powell / Beale重新启动的共轭梯度,Polak-Ribiere共轭梯度和可变学习率反向传播。我们确定具有十个隐藏神经元(或更高层次),一个隐藏层和用于训练算法的缩放共轭梯度的体系结构为我们的应用程序封装了最佳体系结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号