首页> 外文会议>Progress In Electromagnetic Research Symposium >Fast low-frequency methods in computational electromagnetics
【24h】

Fast low-frequency methods in computational electromagnetics

机译:计算电磁学中的快速低频方法

获取原文

摘要

Summary form only given. Low-frequency computational electromagnetics (CEM) solvers play an important role in the simulation and advanced modeling for the static/quasi-static field. It can not only capture both inductive and capacitive physics for the circuit design, but also the weak coupling between the electric and magnetic fields. Especially for the modeling with nanometer-scaled objects, the low-frequency CEM (full-wave) methods become indispensable when the electromagnetic interference cannot be considered by the pure static methods. During the past decades, different solutions have been successfully developed such as the loop-star/tree decomposition, Calderón preconditioned EFIE, the augmented EFIE based methods, and the magnetic field integral equation based methods. The perturbation methods are also useful in improving the accuracy of the algorithm at different frequency orders. To solve the real world problems, differential low-frequency fast algorithms have to be employed, such as the mixed-form fast multipole algorithm (FMA), the accelerated Cartesian expansion (ACE), and the fast Fourier transform (FFT). For the acceleration of perturbation-based methods, the kernel independent fast algorithm is preferred, while the FMA-based fast algorithms are only for the methods with the static and dynamic Green's functions. On the other hand, for the integral equation methods at low frequencies, the contribution of the vector potential is swamped by that of the scalar potential. It introduces the nullspace of the divergence operator in the scalar potential term and make the system matrix ill-conditioned. Therefore, some advanced preconditioners have also to be considered in order to improve the eigen spectrum of the system matrix. Here, the latest progress in this research area will be reviewed.
机译:仅提供摘要表格。低频计算电磁(CEM)求解器在静态/准静态场的仿真和高级建模中起着重要作用。它不仅可以捕获用于电路设计的电感物理和电容物理,还可以捕获电场和磁场之间的弱耦合。特别是对于使用纳米尺度对象的建模,当纯静态方法无法考虑电磁干扰时,低频CEM(全波)方法就变得不可或缺。在过去的几十年中,已经成功开发出了各种解决方案,例如环星/树分解,Caldero'n预处理EFIE,基于增强EFIE的方法以及基于磁场积分方程的方法。扰动方法还有助于提高算法在不同频率阶上的准确性。为了解决现实世界中的问题,必须采用差分低频快速算法,例如混合形式的快速多极算法(FMA),加速的笛卡尔展开量(ACE)和快速傅里叶变换(FFT)。为了加速基于扰动的方法,首选与内核无关的快速算法,而基于FMA的快速算法仅适用于具有静态和动态格林函数的方法。另一方面,对于低频积分方程方法,矢量势的贡献被标量势的贡献所淹没。它在标量势项中引入了散度算子的零空间,并使系统矩阵变差。因此,还必须考虑一些高级的预处理器,以改善系统矩阵的本征谱。在这里,将回顾该研究领域的最新进展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号