首页> 外文会议>Progress In Electromagnetic Research Symposium >Fast low-frequency methods in computational electromagnetics
【24h】

Fast low-frequency methods in computational electromagnetics

机译:计算电磁中的快速低频方法

获取原文

摘要

Summary form only given. Low-frequency computational electromagnetics (CEM) solvers play an important role in the simulation and advanced modeling for the static/quasi-static field. It can not only capture both inductive and capacitive physics for the circuit design, but also the weak coupling between the electric and magnetic fields. Especially for the modeling with nanometer-scaled objects, the low-frequency CEM (full-wave) methods become indispensable when the electromagnetic interference cannot be considered by the pure static methods. During the past decades, different solutions have been successfully developed such as the loop-star/tree decomposition, Caldero?n preconditioned EFIE, the augmented EFIE based methods, and the magnetic field integral equation based methods. The perturbation methods are also useful in improving the accuracy of the algorithm at different frequency orders. To solve the real world problems, differential low-frequency fast algorithms have to be employed, such as the mixed-form fast multipole algorithm (FMA), the accelerated Cartesian expansion (ACE), and the fast Fourier transform (FFT). For the acceleration of perturbation-based methods, the kernel independent fast algorithm is preferred, while the FMA-based fast algorithms are only for the methods with the static and dynamic Green's functions. On the other hand, for the integral equation methods at low frequencies, the contribution of the vector potential is swamped by that of the scalar potential. It introduces the nullspace of the divergence operator in the scalar potential term and make the system matrix ill-conditioned. Therefore, some advanced preconditioners have also to be considered in order to improve the eigen spectrum of the system matrix. Here, the latest progress in this research area will be reviewed.
机译:摘要表格仅给出。低频计算电磁(CEM)求解起到模拟静态/准静态领域发挥重要作用和先进的建模。它不仅可以同时捕获感性和所述电路设计的电容物理学,也是电场和磁场之间的弱耦合。特别是对于具有纳米缩放对象的建模,低频CEM(全波)的方法成为必要,当电磁干扰不能由纯静态方法被考虑。在过去的几十年里,不同的解决方案已成功开发出如环星/树分解,Caldero 3 N预处理EFIE中,扩展基于电场积分方程方法和磁场积分方程为基础的方法。扰动方法也以不同的频率订单提高算法的准确度是有用的。为了解决上述实际问题,差分低频快速算法已被使用,例如混合形式快速多算法(FMA),加速笛卡尔膨胀(ACE),以及快速傅立叶变换(FFT)。用于基于扰动的方法的加速度,内核无关的快速算法是优选的,而基于FMA-快速算法仅用于与所述静态和动态格林函数方法。在另一方面,用于在低频率的积分方程的方法,该载体电位的贡献由该标量势的淹没。它介绍了标量势项发散运营商的零空间,使系统矩阵病态。因此,一些先进的预调也有为了提高系统矩阵的特征值谱加以考虑。此外,在该研究领域的最新进展进行审查。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号