首页> 外文会议>Progress In Electromagnetic Research Symposium >Rapid atmospheric-pressure-plasma processed nanomaterials for electrochemical energy harvesting and storage devices
【24h】

Rapid atmospheric-pressure-plasma processed nanomaterials for electrochemical energy harvesting and storage devices

机译:快速大气压等离子体处理的纳米材料,用于电化学能量收集和存储设备

获取原文

摘要

Summary form only given. Nanostructured screen-printed electrodes featured with high specific surface area are commonly used in electrochemical devices for energy harvesting and storage applications. The fabrication of these nanostructured electrodes via low-cost screen-printing techniques usually involves high-temperature furnace calcination processes. To lower the thermal budget for device fabrication, reducing the processing time is highly desirable. In this study, an ultrashort process was developed for the fabrication of photoanodes and counter electrodes in dye-sensitized solar cells (DSSCs) and nanocomposite electrodes in supercapacitors by using an atmospheric pressure plasma jet (APPJ) technology. Owing to the synergistic effect of the temperature and the reactivity of the plasma jet, comparable cell performance was successfully demonstrated when the conventional furnace calcination processes for the solution-processed nanostructured electrodes were replaced by ultrashort nitrogen APPJ treatments. To determine the endpoint of the APPJ treatment, optical emission spectroscopy analysis was carried out during the process. For DSSC photoanode fabrication, APPJ treatments as short as 1 to 2 min were successfully used to sinter the nanoporous TiO2 layer, to simultaneously deposit particulate TiO2 scattering layer along with the sintering process, and to produce a dual-scale porous TiO2 layer from a mixture of TiO2 nanoparticle paste and NaCl solution. For catalytic counter electrode fabrication, APPJ processes with treatment durations of 1 min, 11 sec, 5 sec have been applied to facilitate the formation of Pt nanoparticles, reduced graphene oxide (rGO) foams, and carbon nanotube (CNT)/TiO2 composites from solution-processed precursor films. For supercapacitor applications, the required APPJ processing duration were merely 5 and 15 sec for the Fe2O3/CNT composite and rGO on carbon cloth, respectively. In particular, we observed the morphology of the carbon-based material could be modified by the APPJ treatment, by which the catalytic activity of the carbon nanomaterial-based counter electrode could be enhanced. This new methodology reduces the processing time and thermal budget, providing a facile approach for the production of cost-effective electrochemical devices for energy harvesting and storage applications.
机译:仅提供摘要表格。具有高比表面积的纳米结构丝网印刷电极通常用于电化学装置中,以进行能量收集和存储。通过低成本的丝网印刷技术来制造这些纳米结构的电极通常涉及高温炉的煅烧过程。为了降低器件制造的热预算,非常需要减少处理时间。在这项研究中,通过使用大气压等离子体射流(APPJ)技术,开发了一种超短工艺,用于制造染料敏化太阳能电池(DSSC)中的光阳极和对电极以及超级电容器中的纳米复合电极。由于温度和等离子体射流的反应性的协同作用,当溶液加工的纳米结构电极的常规炉煅烧工艺被超短氮APPJ处理替代时,成功地证明了可比的电池性能。为了确定APPJ处理的终点,在此过程中进行了光发射光谱分析。对于DSSC光电阳极的制造,成功地使用了短至1-2分钟的APPJ处理来烧结纳米多孔TiO2层,在烧结过程中同时沉积颗粒TiO2散射层,并从混合物中制备出了双尺度的多孔TiO2层。 TiO2纳米颗粒糊和NaCl溶液对于催化对电极的制造,已经应用了处理时间分别为1分钟,11秒,5秒的APPJ工艺,以促进从溶液中形成Pt纳米颗粒,还原的氧化石墨烯(rGO)泡沫和碳纳米管(CNT)/ TiO2复合材料加工的前体薄膜。对于超级电容器应用,Fe2O3 / CNT复合材料和碳布上的rGO所需的APPJ处理时间分别仅为5秒和15秒。特别地,我们观察到可以通过APPJ处理来改变碳基材料的形态,从而可以增强碳纳米材料基对电极的催化活性。这种新的方法减少了处理时间和热预算,为生产用于能量收集和存储应用的高性价比电化学装置提供了一种简便的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号