首页> 外文会议>Progress In Electromagnetic Research Symposium >Nanophotonic structures for waveguide couplers and polarizers
【24h】

Nanophotonic structures for waveguide couplers and polarizers

机译:用于波导耦合器和偏振器的纳米光子结构

获取原文

摘要

We review our recent work on nanophotonic waveguide devices. We shall discuss structures which efficiently couple light into a plasmonic slot waveguide, and the use of a hyperuniform disordered photonic bandgap structure to make a highly compact waveguide polarizers. Nanoscale photonic integration was successfully used to demonstrate the monolithic integration of 850 photonic components on a CMOS microprocessor with over 70 million transistors. This large disparity in the number of photonic and electronic devices on the same chip arises because of the limitation in how small conventional silicon photonic devices can be made. In this talk we shall describe our recent work in two different approaches to enable the integration of smaller photonic devices. One approach for smaller photonic devices is to exploit the guiding of light at metal-dielectric interfaces from surface plasmon-polariton (SPP) modes. Plasmonic devices not only offer the advantage of smaller size, but in the case of optical modulators they can also provide higher energy efficiency and high speed operation. One important challenge for plasmonic devices on silicon chips is how to couple light efficiently into the plasmonic device. We shall present some of the different designs of nanophotonic couplers to couple light efficiently from a conventional silicon waveguide to a plasmonic slot waveguide. Another approach to make smaller photonic devices is to exploit the photonic bandgap of nanophotonic structures for highly compact resonators, filters or polarizers. Unlike convention photonic crystals which require high precision in the periodicity of the photonic lattice, photonic bandgaps from hyperuniform disordered structures are more tolerant to fabrication errors. We shall describe a waveguide polarizer with over 30 dB extinction ratio over a 98nm optical bandwidth that occupies a short length of 8 μm (including the waveguide tapers) based on a hyperuniform disordered photonic bandgap structure [4].
机译:我们回顾了我们在纳米光子波导器件方面的最新工作。我们将讨论有效地将光耦合到等离子缝隙波导中的结构,以及使用超均匀无序光子带隙结构来制造高度紧凑的波导偏振器的结构。纳米级光子集成已成功用于演示850个光子组件在具有超过7000万个晶体管的CMOS微处理器上的单片集成。由于限制了可制造的常规硅光子器件的尺寸,在同一芯片上出现了光子和电子器件数量的巨大差异。在本次演讲中,我们将以两种不同的方法来描述我们最近的工作,以使较小的光子器件能够集成在一起。小型光子设备的一种方法是利用表面等离振子-极化(SPP)模式在金属-电介质界面处引导光。等离子设备不仅具有体积更小的优势,而且在光调制器的情况下,它们还可以提供更高的能源效率和高速运行。硅芯片上等离子设备的一项重要挑战是如何将光有效地耦合到等离子设备中。我们将介绍一些不同设计的纳米光子耦合器,以有效地将光从传统的硅波导耦合到等离子体狭缝波导。制造较小的光子器件的另一种方法是将纳米光子结构的光子带隙用于高度紧凑的谐振器,滤波器或偏振器。与要求在光子晶格的周期性中具有高精度的常规光子晶体不同,来自超均匀无序结构的光子带隙更能容忍制造误差。我们将描述一种基于超均匀无序光子带隙结构的,在98nm光带宽上具有超过30 dB消光比的波导偏振器,其短长度为8μm(包括波导锥度)[4]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号