首页> 外文会议>Proceedings of the ISES EuroSun 2016 Conference >Optimizing design of a Linear Fresnel Reflector for process heat supply
【24h】

Optimizing design of a Linear Fresnel Reflector for process heat supply

机译:用于过程供热的线性菲涅尔反射镜的优化设计

获取原文
获取原文并翻译 | 示例

摘要

Lineal Fresnel Reflectors (LFR) is a promising technology in the field of concentrating solar thermal collectorsrnwhich presents several advantages in comparison with the widely used parabolic-trough collectors (PTC). Arnmethodology to properly design a LFR is presented as well as several issues arisen out the study of a particularrncase. As first step, a brief review was performed to select the proper receiver configuration, resulting in arntrapezoidal cavity with multitube absorber receiver. Secondly, several stages of the optimized process werernfollowed using an in-house ray tracer computer code to simulate the optical behavior of the system. Differentrncharacteristics, as width of the mirrors, number of rows, mirror geometry profile, height, length andrnconfiguration of the receiver, were optimized setting the power impinging in the absorber tube surface as thernobjective function. According to the results obtained, the shape of the mirrors was stablished based on thernoptical advantages that parabolic mirrors have over flatted ones. The point strategy was focused on achieving arnhomogeneous flux in the receiver tubes surface. The height of the receiver over the mirrors plane was selectedrnas the one that maximizes the impinging power. A practical analysis related with the facilities characteristicsrnwas carried out to set the number and width of mirrors. In addition, a thermal balance between the impingingrnpower and the thermal energy gained by the heat transfer fluid (HTF) was performed to calculate the length ofrnthe receiver tubes. Finally, the results of the analytical model were cross checked with a ray tracer softwarern(Tonatiuh), with satisfactory results.
机译:线性菲涅尔反射镜(LFR)是集中式太阳能集热器领域中的一项有前途的技术,与广泛使用的抛物槽式集热器(PTC)相比,它具有多种优势。提出了正确设计LFR的Arnmethodology,以及研究特定案例时出现的一些问题。第一步,进行简短回顾以选择合适的接收器配置,从而形成带有多管吸收器接收器的梯形腔。其次,使用内部射线追踪器计算机代码模拟了系统的光学行为,然后进行了优化过程的几个阶段。优化了反射镜的宽度,行数,反射镜几何形状轮廓,接收器的高度,长度和配置等不同的特性,并将吸收在吸收管表面的功率设置为目标函数。根据获得的结果,基于抛物面反射镜优于平面反射镜的原理优势,确定了反射镜的形状。点策略的重点是在接收管表面实现均匀通量。选择接收器在镜平面上的高度,这是使撞击功率最大的高度。进行了与设施特征有关的实用分析,以设置镜子的数量和宽度。另外,在冲击功率和由传热流体(HTF)获得的热能之间进行热平衡,以计算接收管的长度。最后,使用射线追踪软件rn(Tonatiuh)对分析模型的结果进行了交叉检查,结果令人满意。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号