首页> 外文会议>Proceedings of the ASME international design engineering technical conferences and computers and information in engineering conference 2016 >SEMI-ACTIVE SUSPENSION SUBOPTIMAL CONTROL USING DYNAMIC PROGRAMMING OF A QUARTER CAR SUSPENSION SYSTEM
【24h】

SEMI-ACTIVE SUSPENSION SUBOPTIMAL CONTROL USING DYNAMIC PROGRAMMING OF A QUARTER CAR SUSPENSION SYSTEM

机译:基于四级轿车悬架系统动态规划的半主动悬架次优控制

获取原文
获取原文并翻译 | 示例

摘要

Many modern vehicle control systems utilize automatic braking and torque control to enhance driver inputs for improved stability and deceleration performance of passenger cars. A semi-active suspension approach may allow changes to the suspension characteristics under various conditions or driver inputs during vehicle operation. Suspensions are increasingly using semi active components to enhance handling characteristics by electronically adjusting vehicle dynamics. The active style of adjustment includes modifying suspension parameters directly such as electronic damping rates. The type of controller is important to react or adjust dynamically to the nonlinear nature of suspension systems. An optimal controller is introduced in attempt to improve ride comfort or road handling capability by manipulating the damping coefficient for a given trajectory. A suboptimal approach is given by utilizing a type of receding horizon control. The cost function, as used by Savaresi, contains a bias parameter to shift focus between road holding and passenger comfort. A dynamic quarter car suspension model is presented for simulation of nonlinear vehicle dynamics. During simulation at a given time step, various control inputs are simulated for finite steps into the future. The control input that minimizes the cost function is selected and the simulation time is allowed to advance with that input. The model is simulated using parameters for a typical passenger car and a 100 millisecond update rate from the suboptimal controller. A road profile with a bump is simulated and its transients are analyzed. The suboptimal controller is compared to its purely mechanical realization with a fixed damping coefficient. It is shown when manipulating the cost function ride comfort is desired chassis accelerations are minimized and when maximum road holding is desired tire deflection is minimized.
机译:许多现代车辆控制系统利用自动制动和扭矩控制来增强驾驶员输入,从而改善乘用车的稳定性和减速性能。半主动悬架方法可以允许在各种条件下或在车辆操作期间驾驶员输入下改变悬架特性。悬架正在越来越多地使用半主动部件来通过电子调节车辆动力学来增强操纵性能。主动式调节包括直接修改悬架参数,例如电子阻尼率。控制器的类型对于对悬架系统的非线性特性做出动态反应或进行调整很重要。引入了一种最佳控制器,试图通过操纵给定轨迹的阻尼系数来改善乘坐舒适性或道路处理能力。通过利用后退水平控制的类型给出了次优的方法。 Savaresi使用的成本函数包含一个偏差参数,用于在道路保持和乘客舒适度之间转移焦点。提出了动态四分之一汽车悬架模型,用于非线性车辆动力学仿真。在给定时间步长进行仿真的过程中,将模拟各种控制输入,以模拟将来的有限步长。选择使成本函数最小的控制输入,并允许仿真时间随该输入而增加。使用典型乘用车的参数和次优控制器的100毫秒更新速率对模型进行仿真。模拟具有颠簸的道路轮廓并分析其瞬态。将次优控制器与其具有固定阻尼系数的纯机械实现方式进行比较。示出了当期望成本函数乘坐舒适性时,期望底盘加速度最小化,并且当期望最大道路保持性时,轮胎挠曲最小化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号