【24h】

Void Entrapment into Air Pathways in Partially Impregnated Prepregs in the Out-of-Autoclave Process

机译:在高压灭菌过程中,部分浸渍的预浸料中的空隙截留到空气通道中

获取原文
获取原文并翻译 | 示例

摘要

Out-of-Autoclave (OOA) thermoset prepreg manufacturing of aerospacernquality parts is performed under low pressures, which makes it more susceptible tornvoid formation and growth as compared to high pressure autoclave processing.rnThus, OOA prepregs are intentionally partially impregnated with resin, with therngoal to distribute the resin such that a completely connected network of emptyrnchannels is formed in the initial material. This network serves as pathways forrnevacuation of gases entrapped in the laminate before consolidation and cure. Thisrnwork investigates how mechanically entrapped air can be removed from partiallyrnimpregnated OOA prepreg laminates before oven curing. First, a model of voidrnevacuation time is derived to estimate the time necessary to apply vacuum tornremove air from within the laminate before placing it in the oven. Next, a flowrnvisualization technique is presented where the resin film of the partiallyrnimpregnated OOA prepreg is pressed into the fabric, while recording the resin flowrnon the dry side. This quantifies the degree of resin impregnation with processingrntime. A relationship between degree of resin impregnation and gas permeability isrnpresented which influences the evacuation time necessary to remove air from thernsystem. A large panel (~1.2m long) was fabricated in which low and highrnevacuation times were employed based on the model physics. The void content wasrnquantified along the length via sectioning/polishing/image analysis and shown tornhave a void content of ~1%. The results of this study should prove useful to developrnoptimal vacuum application times and temperature and pressure cycles for voidrnreduction and removal during processing of prepregs.The entrapment of voids is one of the most significant challenges ofrncomposites processing; a small percentage of voids will degrade mechanicalrnproperties by 10-15% [1]. The aerospace industry is motivated to replace aluminumrnand titanium structures with composites because of the additional weight benefits;rnhowever, composite structures of less than 1% void content are difficult to achievernoutside the autoclave processing method. The elevated atmospheric pressure insidernthe autoclave compacts prepreg laminates to high fiber volume fraction and reducesrnvoid size. The drawback is that the autoclave process has high capital costs, whichrnbecome prohibitively exorbitant as the size of the structure becomes larger.rnTo counter these cost challenges, the Out-of-Autoclave (OOA) process isrnbecoming attractive as it can process under vacuum pressure only in an oven tornproduce low void content large composite structures. OOA prepregs differ fromrnautoclave prepregs in that resin only partially impregnates the fiber architecture -rnleaving dry, unimpregnated cross-sections to serve as ‘air pathways’ for removingrnair from the laminate, which if not removed will be entrapped between plies duringrncure and increase the void content in the composite. Additionally, any entrappedrngases have a chance to migrate into air pathways during the application of vacuum,rnwhere they can be evacuated from the laminate easily. Some examples of partiallyrnimpregnated prepregs are schematically shown in Figure 1. The initial architecturernof these prepregs will play an important role in the formation of air and gasrnevacuation pathways which will influence the final void content in the fabricatedrncomposites by OAA process.The resin configuration has been shown to play an important role in airrnevacuation from partially impregnated prepreg laminates. Prepregs with low initialrnresin impregnation have less resistance to gas flow [2], making them suitable forrnevacuating gas from large structures. When fabricating sandwich structures withrnOOA prepregs, air pathways through the thickness have been shown to be highlyrnbeneficial for extracting air from the core [3,4]. This constraint makes UD prepregsrn(with no through thickness pathways) difficult to implement in sandwich structuresrn[5].rnThis study focuses on in-plane air evacuation from partially impregnatedrnprepreg laminates. The goal is to demonstrate the importance of vacuum hold timernprior to oven curing. Required vacuum hold time becomes longer as the part lengthrnincreases and as the degree of resin impregnation increases. Pressure decay raternscales with the square of the part length and linearly with the prepreg’srnpermeability, but the degree of resin impregnation has a non-linear effect onrnpermeability, and hence, the pre-cure cycle vacuum hold time.
机译:航空航天高质量零件的高压釜(OOA)热固性预浸料的制造是在低压下进行的,与高压高压釜加工相比,它更容易出现空洞的形成和生长。分配树脂,从而在初始材料中形成一个完全连接的空通道网络。该网络充当固结和固化之前释放在层压板中的气体的通道。这项工作研究了如何在烘箱固化之前从部分浸渍的OOA预浸料层压板中去除机械残留的空气。首先,推导一个排空时间模型,以估算在将真空放置在烤箱中之前从层压物中抽真空除去空气所需的时间。接下来,提出了一种流动可视化技术,其中将部分浸渍的OOA预浸料的树脂膜压入织物中,同时记录树脂流动在干燥侧。这量化了树脂随处理时间的浸渍程度。提出了树脂浸渍度与气体渗透率之间的关系,该关系影响从系统中除去空气所需的抽空时间。根据模型的物理原理,制作了一块大面板(〜1.2m长),其中采用了上下抽空时间。通过切片/抛光/图像分析沿长度方向对空隙含量进行了量化,结果表明空隙含量约为1%。这项研究的结果应被证明有助于开发最佳的真空施加时间以及温度和压力循环,以减少预浸料的加工过程中的空隙减少和去除。空隙的包裹是复合材料加工的最重大挑战之一。一小部分的空隙会使机械性能降低10-15%[1]。航空航天工业因具有额外的重量优势而被动机用复合材料代替铝和钛结构;然而,在高压釜处理方法之外,很难实现空隙率小于1%的复合结构。高压釜内升高的大气压将预浸料坯压制成高纤维体积分数,并减小空隙尺寸。缺点是高压釜工艺的资本成本很高,随着结构尺寸的增大,这种成本过高。为了应对这些成本挑战,高压釜(OOA)工艺正变得有吸引力,因为它只能在真空压力下进行加工。在烤箱中撕裂会产生低空隙率的大型复合结构。 OOA预浸料与高压釜预浸料的不同之处在于,树脂仅部分浸渍纤维结构-保留干燥,未浸渍的横截面,以作为“空气通道”从层压板中去除空气,如果不去除,则在固化过程中会夹在层之间并增加空隙含量在复合材料中。另外,任何夹带的气体都有机会在施加真空的过程中迁移到空气通道中,在这里它们可以很容易地从层压板中抽出。部分浸渍的预浸料的一些例子如图1所示。这些预浸料的初始结构将在空气和气体排空途径的形成中起重要作用,这将影响通过OAA工艺制造的复合材料中最终的空隙率。树脂的结构已显示在部分浸渍的预浸料层压板的通风中起重要作用。初始树脂浸渍量低的预浸料对气流的阻力较小[2],使其适合从大型结构中抽出气体。当用nOOA预浸料制作夹层结构时,通过厚度的空气通道对从芯中抽出空气非常有益[3,4]。这种限制使得UD预浸料(没有贯穿厚度的通道)难以在夹心结构中实施[5]。本研究的重点是从部分浸渍的预浸料层压板的面内空气疏散。目的是证明在烘箱固化之前真空保持时间的重要性。随着零件长度的增加和树脂浸渍度的增加,所需的真空保持时间会变长。压力衰减率与零件长度的平方成正比,与预浸料的渗透性呈线性关系,但是树脂的浸渍程度对渗透率具有非线性影响,因此,预固化循环的真空保持时间也是如此。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号