首页> 外文会议>Proceedings of the 32nd International Cosmic Ray Conference >First Step Towards A New Proton Decay Experiment In Ice
【24h】

First Step Towards A New Proton Decay Experiment In Ice

机译:迈向冰中新质子衰变实验的第一步

获取原文

摘要

Grand Unified Theories (GUTs) predict a finite lifetime for the proton. The most recent limit, reported by0+ e+) correspondsto 1.01 × 1034years. In the supersymmetric extensions of SU(5), the lifetime of the proton is expected to be lowerthan 1036years. To reach 1036years sensitivity to proton decay requires a detector with a volume on the megatonscale sensitive to sub-GeV energy. Where and how such a detector might ever be realized remains an open challenge.Installation of massive detectors underground is presently a technological challenge with costly excavation, engineeringand installation. We consider here the ice cap at the South Pole which might provide an alternative scenario for a megatonring imaging Cherenkov experiment in the search for proton decay. The ice, studied by the IceCube Collaboration, ismeasured to be extremely pure and transparent. Further, IceCube has demonstrated the ability to instrument a detectorvolume at the gigaton scale on-schedule and on-budget. The 86 strings of IceCube photosensors provide sensitivity toparticle interactions with energies between tens of GeV up to extremely high energies. Given the success of the IceCubeproject in instrumenting the world's largest Cherenkov neutrino detector, and the DeepCore sub-array to extend the reachto low-GeV physics, it seems reasonable to consider the question if the same principle of IceCube, using the Cherenkovmedium as the detector support infrastructure, could provide a cost effective and simplified path to instrument megatonscale detectors with sufficient photocathode area to permit a viable proton decay experiment sensitive to 1036 year lifetime and beyond. In this paper we present the very first steps of a developing design study for a proton decay detector to bepotentially deployed in the center of IceCube-DeepCore, based on Geant4 and the IceCube software with realistic opticalproperties of the glacial ice.
机译:大统一理论(GUT)预测质子的有限寿命。由0+ e +)报告的最新限制对应于1.01×1034年。在SU(5)的超对称扩展中,质子的寿命预计将低于1036年。为了达到1036年的质子衰变灵敏度,需要一个探测器,其体积对亚GeV能量敏感。在哪里以及如何实现这样的探测器仍然是一个悬而未决的挑战。在地下安装大型探测器目前是一项技术挑战,需要进行昂贵的挖掘,工程和安装。我们在这里考虑南极的冰盖,这可能为兆质成像切伦科夫实验寻找质子衰变提供替代方案。由IceCube协作组织研究的冰被测量为极其纯净透明。此外,IceCube展示了在计划内和预算内以千兆级仪器测量探测器体积的能力。 86串IceCube光电传感器提供了对数十GeV到极高能量之间的粒子相互作用的灵敏度。鉴于IceCube项目在仪器仪表世界上最大的Cherenkov中微子探测器方面的成功,以及DeepCore子阵列将探测范围扩展到低GeV物理方面的成功,使用Cherenkov介质作为探测器,考虑是否具有相同IceCube原理的问题似乎是合理的。支持基础设施,可以为具有足够的光阴极面积的兆兆级仪器检测器提供经济有效且简化的途径,以允许对1036年及以后的寿命敏感的可行的质子衰变实验。在本文中,我们介绍了基于Geant4和IceCube软件并具有现实冰河光学特性的质子衰减检测器的开发设计研究的第一步,该检测器可能部署在IceCube-DeepCore的中心。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号