首页> 外文会议>Powder Technology and Application >Flow field characteristic analyses of a turbo air classifier's rotor cage and its structurally improved counterpart
【24h】

Flow field characteristic analyses of a turbo air classifier's rotor cage and its structurally improved counterpart

机译:涡轮空气分级机转子笼的流场特性分析及其结构改进

获取原文
获取原文并翻译 | 示例

摘要

The turbo air classifier is one of the most widely used equipment in powder classification. The complex flow behaviour inside it, however, prevents material experiments from providing information about its internal separation mechanisms. A study of the interaction of structural variables is therefore undertaken examining air flow behaviour, specifically the air flow between the blades of the rotor cage. The investigation of these flow field characteristics made use of the computational fluid dynamics (CFD) to simulate the air flow in the classifier. It was found that the inlet velocity of the turbo air classifier and the rotary speed of the rotor cage are two of the dominating, non-structural factors that affect velocity distributions in the region between the rotor cage blades. Once the inlet velocity settles, a critical rotary speed must be present to smoothen the flow field between the blades, resulting in an excellent classification performance.rnThree-dimensional velocity measurements of the region between the blades by laser Doppler velocimeter (LDV) were performed to test the results of the flow field simulation. This revealed that when inlet velocity is invariable, the velocity distributions in the region between the blades are at its most symmetric with the critical rotary speed of the rotor cage making it more favourable for classification. The velocity measurement results are likewise in good agreement with the results of the flow field simulation.rnNewly structured rotor cages are also simulated and compared with a conventional turbo air classifier, air flow in the newly structured model is smoother. The distributions of radial and tangential velocities are more symmetric and the trend of the rotating vortex between the blades attenuates, particularly when the rotary speed is high. The newly structured rotor cages can therefore achieve higher classification performances.
机译:涡轮空气分级机是粉末分级中使用最广泛的设备之一。但是,内部复杂的流动行为阻止了材料实验提供有关其内部分离机制的信息。因此,对结构变量的相互作用进行了研究,以检查空气流的行为,特别是转子笼叶片之间的空气流。对这些流场特性的研究利用计算流体力学(CFD)来模拟分类器中的气流。已经发现,涡轮空气分级器的入口速度和转子笼的旋转速度是影响转子笼叶片之间的区域中的速度分布的两个主要的非结构性因素。一旦入口速度稳定下来,就必须存在临界旋转速度以平滑叶片之间的流场,从而获得出色的分级性能。用激光多普勒测速仪(LDV)对叶片之间的区域进行三维速度测量,以测试流场模拟的结果。这表明,当入口速度不变时,叶片之间区域中的速度分布与转子笼的临界转速最对称,这使其更易于分类。速度测量结果也与流场模拟结果非常吻合。rn还对新型结构的转子保持器进行了模拟,并且与常规涡轮空气分级机相比,新结构模型中的空气流动更加顺畅。径向和切向速度的分布更加对称,叶片之间的旋转涡流趋势减弱,特别是在转速较高时。因此,新构造的转子保持架可以实现更高的分类性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号