【24h】

Hybrid optical antenna with high directivity gain

机译:具有高方向性增益的混合光学天线

获取原文
获取原文并翻译 | 示例

摘要

Coupling between electronic state and far field light, including absorption and spontaneous emission, is a central issue for applications such as quantum metrology, optical quantum information, single molecule fluorescence spectroscopy, and ultra sensitive detection which demand on high quantum efficiency. In such applications, propagating far field light with diffraction limited spatial distribution has to be coupled to the electronic state of a quantum absorber/emitter with a size far below the diffraction limit. Such a significant contrast between the wavelengths of photon and electron sets limitations on the light-matter interaction strength. The most straight forward solution is to convert far-field modes to near-field modes with dimensional scale closer to the electronic state. The process of converting far field to near field and vice versa can be conducted by an antenna as an intermediate element between far field mode and electronic state in a quantum element (absorber/emitter). Here, we classify optical antenna based on their performance into three categories. Considering each category advantage, we propose a hybrid antenna with superior performance. A quantum efficiency of about 50% is predicted for a semiconductor with volume of ~λ~3/170. Despite the weak optical absorption coefficient of 2000 cm~(-1) in the long infrared wavelength of ~8 μm, very strong far-filed coupling has been achieved, as evidenced by an axial directivity gain of 16 dB, which is only 3 dB bellow of theoretical limit.
机译:电子状态和远场光之间的耦合(包括吸收和自发发射)是诸如量子计量学,光学量子信息,单分子荧光光谱和超灵敏检测等要求高量子效率的应用的中心问题。在这样的应用中,具有有限衍射分布的远场光必须耦合到量子吸收器/发射器的电子状态,其尺寸远低于衍射极限。光子和电子的波长之间的这种显着对比设置了光物质相互作用强度的限制。最直接的解决方案是将远场模式转换为尺寸尺度更接近电子状态的近场模式。可以将天线作为远场模式和量子态(吸收器/发射极)中电子状态之间的中间元素,将远场转换为近场,反之亦然。在这里,我们根据光学天线的性能将其分为三类。考虑到每种类别的优势,我们提出了一种性能优越的混合天线。对于体积约为λ〜3/170的半导体,预计其量子效率约为50%。尽管在〜8μm的长红外波长中光吸收系数很弱(2000 cm〜(-1)),但仍实现了非常强的远场耦合,如16 dB的轴向方向性增益所证明的那样,仅为3 dB在理论极限以下。

著录项

  • 来源
  • 会议地点 San Diego CA(US)
  • 作者单位

    Bio-inspired Sensors and Optoelectronics Laboratory (BISOL), Department of Electrical Engineering and Computer Science, Northwestern University, Evanston IL 60208;

    Bio-inspired Sensors and Optoelectronics Laboratory (BISOL), Department of Electrical Engineering and Computer Science, Northwestern University, Evanston IL 60208;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号