【24h】

Hybrid optical antenna with high directivity gain

机译:具有高方向性增益的混合光天线

获取原文

摘要

Coupling between electronic state and far field light, including absorption and spontaneous emission, is a central issue for applications such as quantum metrology, optical quantum information, single molecule fluorescence spectroscopy, and ultra sensitive detection which demand on high quantum efficiency. In such applications, propagating far field light with diffraction limited spatial distribution has to be coupled to the electronic state of a quantum absorber/emitter with a size far below the diffraction limit. Such a significant contrast between the wavelengths of photon and electron sets limitations on the light-matter interaction strength. The most straight forward solution is to convert far-field modes to near-field modes with dimensional scale closer to the electronic state. The process of converting far field to near field and vice versa can be conducted by an antenna as an intermediate element between far field mode and electronic state in a quantum element (absorber/emitter). Here, we classify optical antenna based on their performance into three categories. Considering each category advantage, we propose a hybrid antenna with superior performance. A quantum efficiency of about 50% is predicted for a semiconductor with volume of ~λ~3/170. Despite the weak optical absorption coefficient of 2000 cm~(-1) in the long infrared wavelength of ~8 μm, very strong far-filed coupling has been achieved, as evidenced by an axial directivity gain of 16 dB, which is only 3 dB bellow of theoretical limit.
机译:电子状态和远场光之间的耦合,包括吸收和自发发射,是量子计量,光学量子信息,单分子荧光光谱和对高量子效率要求的超敏感检测的应用。在这种应用中,具有衍射限制空间分布的远场光必须耦合到量子吸收体/发射器的电子状态,其尺寸远低于衍射极限。光子波长与电子对灯具相互作用强度的限制之间如此显着对比。最直接的解决方案是将远场模式转换为近场模式,尺寸较近电子状态。将远场转换为近场的过程,反之亦然,并且可以通过天线作为中间元件来进行的,作为量子元件(吸收器/发射器)之间的远场模式和电子状态。在这里,我们将光学天线根据其性能分为三类。考虑到每个类别的优势,我们提出了一种具有卓越性能的混合天线。对于具有体积〜λ〜3/170的半导体,预测量子效率约为50%。尽管2000cm〜(-1)的光学吸收系数弱,但在长红外波长〜8μm的长度下,已经实现了非常强烈的远射耦合,如16 dB的轴向尺寸增益所证明,这仅为3 dB理论极限的轰击。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号