首页> 外文会议>Physics, simulation, and photonic engineering of photovoltaic devices III >Silicon solar cell enhancement by plasmonic silver nanocubes
【24h】

Silicon solar cell enhancement by plasmonic silver nanocubes

机译:等离子体银纳米立方体增强硅太阳能电池

获取原文
获取原文并翻译 | 示例

摘要

Our paper presents a detailed numerical simulation and experimental study of the efficiency enhancement gained by optimizing metal nanocubes incorporated on the surface of silicon solar cells. We investigate the effects of nanoparticle size, surface coverage and spacer layer thickness on solar absorption and cell efficiency. The fabrication of nanocubes on solar cells is also presented, with the trends observed in simulation verified through experimental data. Testing reveals that nanocubes show worse performance than nanospheres when sitting directly on the silicon substrate; however, enhancement exceeds that of nanospheres when particles are placed on an optimized spacer layer of SiO_2, for reasonable surface coverages of up to 25%. Our analysis shows that for a large range of particle sizes, 60 - 100nm, enhancement in light absorption remains at a high level, near the optimum. This suggests a high level of fabrication tolerance which is important due to the chemical growth mechanism used for nanocube synthesis, as it consistently produces nanocubes in that range. Further, we note that efficiency enhancement by nanocubes is influenced by particle size, surface coverage, and spacer layer thickness much differently than that for a spherical geometry, thus our study focuses on the optimization of the nanocube parameters. We show that 80nm nanocubes on a 25nm SiO_2 spacer layer realize ~ 24% enhancement in light absorption compared to an identical particle-free cell. Finally, we present both the numerical and experimental results for silicon solar cells coated with nanocube arrays.
机译:本文介绍了通过优化掺入硅太阳能电池表面的金属纳米立方体获得的效率提高的详细数值模拟和实验研究。我们研究了纳米颗粒尺寸,表面覆盖率和间隔层厚度对太阳吸收和电池效率的影响。还介绍了在太阳能电池上制备纳米立方体的过程,并通过实验数据验证了在仿真中观察到的趋势。测试表明,当直接放在硅衬底上时,纳米立方体的性能要比纳米球差。然而,当将颗粒置于优化的SiO_2隔离层上时,纳米球的增强作用超过了纳米球,对于高达25%的合理表面覆盖率。我们的分析表明,对于60-100nm的较大粒径范围,光吸收增强保持在较高水平,接近最佳值。这表明较高的制造公差,这很重要,这是由于用于纳米立方体合成的化学生长机制所致,因为它始终可产生该范围的纳米立方体。此外,我们注意到纳米立方体的效率提高受到粒径,表面覆盖范围和间隔层厚度的影响,与球形几何形状的影响大不相同,因此我们的研究重点是纳米立方体参数的优化。我们显示,与相同的无颗粒电池相比,在25nm SiO_2隔离层上的80nm纳米立方体可实现约24%的光吸收增强。最后,我们给出了涂覆有纳米立方体阵列的硅太阳能电池的数值和实验结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号