首页> 外文会议>Physics and simulation of optoelectronic devices XXII >Plasmonic enhancement and losses in light-emitting quantum-well structures incorporating metallic gratings
【24h】

Plasmonic enhancement and losses in light-emitting quantum-well structures incorporating metallic gratings

机译:掺入金属光栅的发光量子阱结构中的等离子体增强和损耗

获取原文
获取原文并翻译 | 示例

摘要

The unique properties of surface plasmons (SPs) are expected to provide a great improvement of light extraction in light-emitting diodes (LEDs). Surface plasmon modes are characterized by a high local density of states, and if scattered by gratings, significantly high emission enhancement is achievable. We investigate the physical role of SPs in improving light extraction from GaN quantum-well (QW) light-emitting structures incorporating metallic grating, by using first-principle theory based on Maxwell's equations and fluctuational electrodynamics. We demonstrate how careful nano-engineering, specifically by choosing the right nano-grating period, can reduce absorption losses and provide optimal enhancement; in the investigated test geometries, light extraction is increased by a factor of four, with the plasmonic losses being reduced from ~ 90% to below ~ 60% thanks to the metallic grating. While the results confirm a strong enhancement and reduction in the plasmonic losses, the overall losses still represent a significant obstacle for plasmonic-enhanced emission. With further optimization of the structure, the grating shapes and the materials, a much larger enhancement and lower losses are expected to be possible.
机译:预期表面等离子体激元(SP)的独特特性将极大改善发光二极管(LED)中的光提取。表面等离子体激元模式的特征在于高的局部状态密度,如果被光栅散射,则可以实现显着的高发射增强。我们通过基于麦克斯韦方程组和波动电动力学的第一性原理,研究了SPs在改善从结合金属光栅的GaN量子阱(QW)发光结构中提取光的物理作用。我们展示了精心设计的纳米工程,特别是通过选择正确的纳米光栅周期,可以减少吸收损耗并提供最佳的增强效果;在研究的测试几何结构中,由于采用了金属光栅,光提取增加了四倍,等离子体损耗从〜90%降低至〜60%以下。尽管结果证实了等离子体损失的显着增强和减少,但总损失仍然是等离子体增强发射的重大障碍。随着结构,光栅形状和材料的进一步优化,有望实现更大的增强和更低的损耗。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号