首页> 外文会议>Physics and simulation of optoelectronic devices XXI >Development and optimization of an integrated Faraday modulator and compensator design for optical polarimetry
【24h】

Development and optimization of an integrated Faraday modulator and compensator design for optical polarimetry

机译:开发和优化用于光学偏振的集成法拉第调制器和补偿器设计

获取原文
获取原文并翻译 | 示例

摘要

In the past, Faraday based optical polarimetry approaches have shown considerable potential for the measurement of optical activity with application towards the noninvasive measurement of physiological glucose concentration. To date, most reported closed-loop systems incorporate separate Faraday components for modulation and compensation requiring two optical crystals. These systems have demonstrated significant stability and sub-millidegree rotational sensitivities; however, the main drawbacks to this approach are the optical materials (e.g., terbium gallium garnet) can be quite expensive and often custom fabricated induction coils are required. In this investigation, we propose a new design for the Faraday components capable of achieving both modulation and compensation in a single crystal device. The design is more compact and is capable of achieving similar performance with low cost commercially available inductive components. To facilitate prototype optimization, our group has developed a finite element model (FEM) that can simulate various physical parameters such as geometry, inductance, and orientation with respect to the optical rod in order to minimize power consumption and size while maintaining appropriate field strength. Performance is comparable to existing nonintegrated approaches and is capable of achieving modulation depths > 1 ° under similar operating conditions while attaining sub-millidegree linear polarization sensitivity. There is also excellent correlation between the FEM and experimental prototype with operational performance shown to be within 1.8%. The use of FEM simulations allows for the analysis of a vast range of parameters before prototypes are fabricated and can facilitate custom designs as related to development time, anticipated performance, and cost reduction.
机译:过去,基于法拉第的光学偏振法已显示出相当大的潜力,可用于光学活性的测量,可用于生理葡萄糖浓度的无创测量。迄今为止,大多数报道的闭环系统都包含独立的法拉第组件,以进行调制和补偿,需要两个光学晶体。这些系统已显示出显着的稳定性和亚毫米级的旋转灵敏度;然而,这种方法的主要缺点是光学材料(例如,gall镓石榴石)可能非常昂贵,并且经常需要定制的感应线圈。在这项研究中,我们提出了一种法拉第组件的新设计,该组件能够在单晶器件中实现调制和补偿。该设计更加紧凑,能够以低成本的商用电感组件实现类似的性能。为了促进原型优化,我们小组开发了一个有限元模型(FEM),该模型可以模拟各种物理参数,例如几何形状,电感和相对于光棒的方向,以便在保持适当的场强的同时最大程度地降低功耗和尺寸。性能可与现有的非集成方法相媲美,并且能够在相似的工作条件下实现> 1°的调制深度,同时获得亚毫米级的线性极化灵敏度。有限元分析和实验原型之间也有很好的相关性,运行性能在1.8%以内。 FEM仿真的使用允许在制造原型之前分析各种参数,并可以促进与开发时间,预期性能和降低成本有关的定制设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号