【24h】

Simplified Gain Calculation In Erbium Doped LiNbO_3 Waveguides

机译:掺b LiNbO_3波导的简化增益计算

获取原文
获取原文并翻译 | 示例

摘要

The combination of excellent electro-optical, acousto-optical and non-linear optical properties makes lithium niobate (LiNbO_3) an attractive host material for integrated optical components such as electro-optical modulators, acousto-optically tunable wavelength filters and Bragg gratings. In the last few years Erbium doped LiNbO_3 waveguide optical amplifiers (EDWA's) have attracted increasing interest. The combination of the amplifying properties of erbium with the excellent acousto-optical and electro-optical properties of the waveguide substrate LiNbO_3 allows the development of a whole class of new waveguide devices of higher functionality. The optical gain achievable in Ti:Er:LiNbO_3 waveguides by optical pumping could compensate or even over compensate these scattering, absorption and insertion losses leading to "zero loss" devices with net optical gain. The different types of lasers and amplifiers can be combined with other active and passive devices on the same substrate to form integrated optical circuits (IOC's) for a variety of applications in optical communications, sensing, signal processing and measurement techniques. The analysis of Er-doped diffused channel waveguides is, hence, required for design of amplifying integrated optical circuits in order to optimize the performance of these gain devices. The coupled differential equations, which govern the evolution of, pump power (1484nm), signal power (1485 to 1600nm) and amplified spontaneous emission, involve integrals which depend explicitly on the modal fields at the pump and signal wavelength in the diffused channel waveguide. In general, it is not possible to obtain analytical forms for the modal fields and propagation constant, hence, to obtain them various approximate or numerical methods (BPM, finite difference or finite element) are used. In this paper the modal field profiles obtained by the variational analysis are further approximated to an appropriately chosen Gaussian function, which leads to analytical forms of coupled differential equations with no integrals for the calculation of gain and ASE characteristics of the amplifying waveguide. Thus, computations are simplified and computation time is also reduced.
机译:优异的电光,声光和非线性光学性能的结合使铌酸锂(LiNbO_3)成为集成光学组件(如电光调制器,声光可调波长滤光片和布拉格光栅)的有吸引力的主体材料。在最近几年中,掺Er的LiNbO_3波导光放大器(EDWA's)引起了越来越多的兴趣。 of的放大特性与波导基板LiNbO_3的优异的声光和电光特性相结合,可以开发出一类功能更高的新型波导器件。通过光泵浦可在Ti:Er:LiNbO_3波导中实现的光学增益可以补偿或什至过度补偿这些散射,吸收和插入损耗,从而导致具有净光学增益的“零损耗”器件。可以将不同类型的激光器和放大器与同一基板上的其他有源和无源设备组合在一起,以形成集成光学电路(IOC),以用于光通信,传感,信号处理和测量技术中的各种应用。因此,为了设计这些增益器件的性能,需要对掺Er的扩散通道波导进行分析,以设计放大集成电路。耦合的微分方程控制泵浦功率(1484nm),信号功率(1485至1600nm)和放大的自发发射的演化,涉及积分,这些积分明确取决于泵浦的模态场和扩散通道波导中的信号波长。通常,不可能获得模态场和传播常数的解析形式,因此,要获得它们,可以使用各种近似或数值方法(BPM,有限差分或有限元)。在本文中,通过变分分析获得的模态场轮廓被进一步近似为适当选择的高斯函数,这导致没有积分的耦合微分方程的解析形式用于计算放大波导的增益和ASE特性。因此,简化了计算并且也减少了计算时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号