首页> 外文会议>Photon Management II >Iterative and non-iterative nonuniform quantisation techniques in digital holography
【24h】

Iterative and non-iterative nonuniform quantisation techniques in digital holography

机译:数字全息术中的迭代和非迭代非均匀量化技术

获取原文
获取原文并翻译 | 示例

摘要

Compression is essential for efficient storage and transmission of three-dimensional (3D) digital holograms. The inherent speckle content in holographic data causes lossless compression techniques, such as Huffman and Burrows-Wheeler (BW), to perform poorly. Therefore, the combination of lossy quantisation followed by lossless compression is essential for effective compression of digital holograms. Our complex-valued digital holograms of 3D real-world objects were captured using phase-shift interferometry (PSI). Quantisation reduces the number of different real and imaginary values required to describe each hologram. Traditional data compression techniques can then be applied to the hologram to actually reduce its size. Since our data has a nonuniform distribution, the uniform quantisation technique does not perform optimally. We require nonuniform quantisation, since in a histogram representation our data is denser around the origin (low amplitudes), thus requiring more cluster centres, and sparser away from the origin (high amplitudes). By nonuniformly positioning the cluster centres to match the fact that there is a higher probability that the pixel will have a low amplitude value, the cluster centres can be used more efficiently. Nonuniform quantisation results in cluster centres that are adapted to the exact statistics of the input data. We analyse a number of iterative (k-means clustering, Kohonen competitive neural network, SOM, and annealed Hopfield neural network), and non-iterative (companding, histogram, and optimal) nonuniform quantisation techniques. We discuss the strengths and weaknesses of each technique and highlight important factors that must be considered when choosing between iterative and non-iterative nonuniform quantisation. We measure the degradation due to lossy quantisation in the reconstruction domain, using the normalised rms (NRMS) metric.
机译:压缩对于有效存储和传输三维(3D)数字全息图至关重要。全息数据中固有的斑点含量导致诸如Huffman和Burrows-Wheeler(BW)之类的无损压缩技术表现不佳。因此,有损量化与无损压缩的组合对于有效压缩数字全息图至关重要。我们使用相移干涉术(PSI)捕获了3D现实世界对象的复数值数字全息图。量化减少了描述每个全息图所需的不同实部和虚部值的数量。然后可以将传统的数据压缩技术应用于全息图,以实际减小其尺寸。由于我们的数据分布不均匀,因此统一量化技术无法达到最佳效果。我们需要非均匀的量化,因为在直方图表示中,我们的数据在原点附近(低振幅)比较密集,因此需要更多的聚类中心,并且远离原点(高振幅)变得稀疏。通过不均匀地放置聚类中心以匹配像素具有较低幅度值的可能性较高的事实,可以更有效地使用聚类中心。非均匀量化会导致聚类中心适应于输入数据的准确统计信息。我们分析了许多迭代(k均值聚类,Kohonen竞争神经网络,SOM和退火的Hopfield神经网络)和非迭代(压扩,直方图和最佳)非均匀量化技术。我们讨论了每种技术的优缺点,并重点介绍了在迭代和非迭代非均匀量化之间进行选择时必须考虑的重要因素。我们使用归一化均方根(NRMS)度量来测量由于重构域中的有损量化而引起的降级。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号