首页> 外文会议>Phase transformations and systems driven far from equilibrium >KINETIC LATTICE MONTE CARLO SIMULATIONS OF DIFFUSION AND DECOMPOSITION KINETICS IN FE-CU ALLOYS: EMBEDDED ATOM AND NEAREST NEIGHBOR POTENTIALS
【24h】

KINETIC LATTICE MONTE CARLO SIMULATIONS OF DIFFUSION AND DECOMPOSITION KINETICS IN FE-CU ALLOYS: EMBEDDED ATOM AND NEAREST NEIGHBOR POTENTIALS

机译:Fe-Cu合金扩散和分解动力学的动力学晶格蒙特卡罗模拟:嵌入原子和近邻邻电位

获取原文
获取原文并翻译 | 示例

摘要

In principle, Kinetic Lattice Monte Carlo (KLMC) methods can accurately simulate the precipitation of coherent phases by tracking the motion of a vacancy and the corresponding diffusion and clustering of solutes. The fidelity of the KLMC simulations depends primarily on the validity of the assumed interatomic potentials. These potentials must provide accurate solute-solute-solvent-vacancy energetics over the length scales relevant to the physical decomposition paths. Of course, simulating long range strain energy interactions is the biggest challenge, but the significance of this contribution is less in systems manifesting primarily dilational strains. Simple nearest neighbor (NN) potentials, used in previous KLMC of decomposition kinetics of dilute Fe-Cu alloys are generally not able to reproduce alloy property combinations like vacancy formation energies, dilute heats of solution and the coherent interface energies. Further, solute diffusion in bcc alloys requires jumps between first and second nearest neighbors, and is governed by, at minimum, at least three independent jump frequencies. The jump frequencies are controlled by the binding energies of atoms out to at least second nearest neighbor positions (which are only about 15% further away from the solute than the first nearest neighbor) and are also influenced by solute-modified saddle point activation energies. Thus longer range multiatom embedded-atom-method (EAM) type potentials can, in principle, provide a more realistic simulation of diffusion and solute clustering compared to NN based models. However, this refinement comes at a much higher computational cost. While they cannot be directly compared, this study presents KLMC results for both a simplified EAM versus a NN potential, and describes important new mechanistic insight provided by these atomistic simulations.
机译:原则上,动力学晶格蒙特卡洛(KLMC)方法可以通过跟踪空位的运动以及相应的溶质扩散和聚集来准确模拟相干相的沉淀。 KLMC模拟的保真度主要取决于假定的原子间电势的有效性。这些电势必须在与物理分解路径有关的长度尺度上提供准确的溶质-溶质-溶剂-空位能量学。当然,模拟远距离应变能相互作用是最大的挑战,但是在主要表现为膨胀应变的系统中,这种贡献的意义不大。在以前的KLMC中,稀铁铜合金的分解动力学中使用的简单最近邻(NN)电位通常不能复制合金属性组合,如空位形成能,溶液稀热和相干界面能。此外,bcc合金中的溶质扩散需要在第一和第二最近邻之间跳跃,并且至少受至少三个独立的跳跃频率支配。跃迁频率由向外至至少第二最近邻位置的原子的结合能控制(该原子的结合能比第一近邻仅距溶质仅约15%),并且还受溶质修饰的鞍点活化能的影响。因此,原则上,与基于NN的模型相比,更长距离的多原子嵌入式原子方法(EAM)类型的电势可以提供更逼真的扩散和溶质聚类仿真。但是,这种改进的计算成本要高得多。尽管无法直接比较它们,但本研究提供了简化的EAM和NN势的KLMC结果,并描述了这些原子模拟提供的重要的新的机械原理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号