首页> 外文会议>Penetrating radiation systems and applications IX >Ultrashort relativistic electron bunches and spatio-temporal radiation biology
【24h】

Ultrashort relativistic electron bunches and spatio-temporal radiation biology

机译:超短相对论电子束和时空辐射生物学

获取原文
获取原文并翻译 | 示例

摘要

The intensive developments of terawatt Ti:Sa lasers permit to extend laser-plasma interactions into the relativistic regime, providing very-short electron or proton bunches. Experimental researches developed at the interface of laser physics and radiation biology, using the combination of sub-picosecond electron beams in the energy range 2-15 MeV with femtosecond near-IR optical pulses might conjecture the real-time investigation of penetrating radiation effects. A perfect synchronization between the particle beam (pump) and optical beam at 820 nm (probe) allows subpicosecond time resolution. This emerging domain involves high-energy radiation femtochemistry (HERF) for which the early spatial energy deposition is decisive for the prediction of cellular and tissular radiation damages. With vacuum-focused intensities of 2.7 × 10~(19) W cm~(-20 and a high energy electron total charge of 2.5 nC, radiation events have been investigated in the temporal range 10~(13) - 10~(-10) s. The early radiation effects of secondary electron on biomolecular sensors may be investigated inside sub-micrometric ionisation, considering the radial direction of Gaussian electron bunches. It is shown that short range electron-biosensor interactions lower than 10 A take place in nascent track structures triggered by penetrating radiation bunches. The very high dose delivery 10~(13) Gy s~(-1) performed with laser plasma accelerator may challenge our understanding of nanodosimetry on the time scale of molecular target motions. High-quality ultrashort penetrating radiation beams open promising opportunities for the development of spatio-temporal radiation biology, a crucial domain of cancer therapy, and would favor novating applications in nanomedicine such as highly-selective short-range pro-drug activation.
机译:兆瓦级Ti:Sa激光器的迅猛发展使激光-等离子体相互作用扩展到相对论领域,提供了非常短的电子或质子束。在激光物理学和辐射生物学的界面上进行的实验研究,将能量范围在2-15 MeV的亚皮秒电子束与飞秒近红外光脉冲结合使用,可能会推测穿透辐射效应的实时研究。粒子束(泵浦)和820 nm(探头)的光束之间的完美同步允许亚皮秒的时间分辨率。这个新兴领域涉及高能辐射飞化学(HERF),对于这种能量的早期空间能量沉积对于预测细胞和组织的辐射损伤具有决定性作用。以2.7×10〜(19)W cm〜(-20)的真空聚焦强度和2.5 nC的高能电子总电荷,研究了时间范围10〜(13)-10〜(-10)中的辐射事件。 s。考虑到高斯电子束的径向方向,可以在亚微米级电离中研究次级电子对生物分子传感器的早期辐射效应,结果表明,在新生轨道中发生了低于10 A的短距离电子生物传感器相互作用。激光束加速器进行的非常高的剂量传递10〜(13)Gy s〜(-1),可能会挑战我们对分子靶运动时间尺度上的纳米剂量学的理解。光束为时空辐射生物学(癌症治疗的重要领域)的发展提供了广阔的机遇,并将有利于纳米药物的创新应用,例如高度选择性的短程前驱ug激活。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号