首页> 外文会议>Automotive partnering summit 2018 >Accelerating Silicon Anode Development
【24h】

Accelerating Silicon Anode Development

机译:加速硅阳极开发

获取原文
获取原文并翻译 | 示例

摘要

Silicon is one of the most promising near-term anode materials because of its theoretical specific capacity (4200mAh/g) compared to commercially available graphite anodes (370mAh/g). However, Si electrodes suffer considerable volume expansion of up to 300% during electrochemical lithiation, leading to electrode cracking and pulverization of the Si, causing rapid capacity degradation. Various approaches had been used to mitigate the volume change including using nanostructured Si materials and Si alloys. The interval distance between nano structures and internal spaces in them can act as structural buffer space to accommodate the volume expansion of Si. Although some of the nanostructured Si materials achieved considerably high capacity and cyclability, they are usually prepared by complicate and high cost synthetic process which are difficult to extend to large scale. The volume expansion of Si can also be suppressed by the presence of inactive components, resulting in the maximum energy density at a given volume expansion. Literature has also shown commercially available and low-cost Si alloys can serve as high capacity Li-storage anodic host materials with certain cyclability. If such Si alloy compounds can be made with required chemical stoichiometry and structural architecture though a simple mechanochemical process. Wildcat Discovery Technologies is developing facile synthesis pathway to prepare Si-alloy active/inactive material. Our approach utilized high-throughput combinatorial research to optimize synthesis process, Si-alloy composition and electrode component to improve the cycling performance of the anode material. Electrode design affects the electrochemical performance significantly other than the impact of active material alone. Here we demonstrated the sensitivity and impact of synthesis conditions and electrode design parameters.
机译:硅是最有希望的近期阳极材料之一,因为与市场上可买到的石墨阳极(370mAh / g)相比,硅的理论比容量(4200mAh / g)。但是,在电化学锂化过程中,Si电极的体积膨胀高达300%,导致电极破裂和Si粉碎,从而导致容量快速下降。已经使用各种方法来减轻体积变化,包括使用纳米结构的硅材料和硅合金。纳米结构与其内部空间之间的间隔距离可以充当结构缓冲空间,以适应Si的体积膨胀。尽管一些纳米结构的Si材料实现了相当高的容量和可循环性,但是它们通常是通过复杂且成本高的合成工艺制备的,这些工艺难以大规模推广。 Si的体积膨胀还可以通过惰性组分的存在来抑制,从而在给定的体积膨胀下产生最大的能量密度。文献还表明,市售的低成本Si合金可以用作具有一定循环能力的高容量锂存储阳极主体材料。如果这样的硅合金化合物可以通过简单的机械化学过程以所需的化学计量和结构结构制成。 Wildcat Discovery Technologies正在开发简便的合成途径,以制备硅合金活性/惰性材料。我们的方法利用高通量组合研究来优化合成工艺,硅合金成分和电极组分,以改善阳极材料的循环性能。除单独使用活性材料外,电极设计还会显着影响电化学性能。在这里,我们展示了合成条件和电极设计参数的敏感性和影响。

著录项

  • 来源
  • 会议地点 San Diego(US)
  • 作者单位

    Wildcat Discovery Technologies, Inc., 6255 Ferris Square, Suite A, San Diego, CA 92121 USA;

    Wildcat Discovery Technologies, Inc., 6255 Ferris Square, Suite A, San Diego, CA 92121 USA;

    Wildcat Discovery Technologies, Inc., 6255 Ferris Square, Suite A, San Diego, CA 92121 USA;

    Wildcat Discovery Technologies, Inc., 6255 Ferris Square, Suite A, San Diego, CA 92121 USA;

    Wildcat Discovery Technologies, Inc., 6255 Ferris Square, Suite A, San Diego, CA 92121 USA;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-26 14:32:53

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号