首页> 外文会议>Paralle CFD(Computational Fluid Dynamics) Conference; 20040524-27; Las Palmas de Gran Canaria(ES) >Adaptive Time Domain Decomposition for systems of ODEs on Grid architecture
【24h】

Adaptive Time Domain Decomposition for systems of ODEs on Grid architecture

机译:网格结构上ODE系统的自适应时域分解

获取原文
获取原文并翻译 | 示例

摘要

Modelling complex systems can lead to solve ODEs, and/or DAEs systems to understand the dynamics behavior, eventually stiff, of the solutions. The main difficulty in term of parallel implementation of such systems of equations is the poor granularity of the computations, especially, for the grid computing architecture, which is characterized by a large number of processors. Nevertheless, the development of low cost parallel computer change the concept of an efficient parallel implementation. The number of available processors allows to consider these computational resources to improve the confidence in the solution by combining several schemes of different orders and different discretisations, to validate and to verify the result. The main approach used in the past to obtain parallel solver for ODEs systems consists to parallelize "across the method" which distributes to the processors the computation of steps of multi-step methods as Runge-Kutta RK(4) method. The number of processors used is limited as it depends of the number of steps. An another approach is the time decomposition method was originaly introduced by people from the multi-grid field and was applied to solve PDEs. The "parareal" scheme proposed in [5] follows this approach to consider two levels of grids in time in order to split the domain in time in subdomains. A prediction of the solution is computed on the fine grid in time in parallel. Then at each end boundaries of time sub-domains the solution makes a jump with the previous initial boundary value (IBV) of the next subdomain in time. A correction of the IBV for the next fine grid iterate is then computed on the coarse grid in time. [2] shows that the method converge at least in a finite number of iterations, due to the propagation of the fine time grid solution as at each iteration k, the IBV of the k~(th) time sub-domain is exact. Nevertheless, this approach seems to have difficulties for stiff non linear problems eventually with bifurcation parameters. We propose in this paper to investigate the same concept of prediction on fine grid and correction on coarse grid but with introducing more adaptivity in the definition of the fineness of the grids, the number of grids for correction, and the decomposition of the time interval. We expect to improve the method in order to solve stiff ODEs problems. We postulate that we can have as much processors as we need (grid architecture), and the main focus is to reduce the elapse time to obtain the solution on a finite time interval with a given precision.
机译:对复杂系统进行建模可以解决ODE和/或DAE系统问题,从而了解解决方案的动力学行为,最终使其变得僵硬。在并行执行这种方程式系统方面,主要困难是计算的粒度较差,尤其是对于网格计算体系结构而言,这种体系结构的特点是具有大量处理器。然而,低成本并行计算机的发展改变了有效并行实现的概念。可用处理器的数量允许考虑这些计算资源,以通过组合具有不同阶数和不同离散的几种方案来验证和验证结果,从而提高对解决方案的信心。过去用于获得ODEs系统的并行求解器的主要方法包括并行化“跨方法”,该方法将多步方法的步骤计算作为Runge-Kutta RK(4)方法分配给处理器。所使用的处理器数量受到限制,因为它取决于步骤数量。另一种方法是时间分解方法,最初是由多网格领域的人们引入的,并被用于求解PDE。文献[5]中提出的“超现实”方案采用这种方法来考虑时间上的两层网格,以便在子域中按时间划分域。该解决方案的预测是在时间上并行地在细网格上计算的。然后,在时间子域的每个末端边界处,解决方案会与时间上下一个子域的先前初始边界值(IBV)进行跳转。然后,及时在粗网格上计算下一个细网格迭代的IBV校正。 [2]表明,该方法至少在有限数量的迭代中收敛,这是由于精细时间网格解的传播如每次迭代k一样,第k个(第)时间子域的IBV是精确的。然而,这种方法对于最终具有分叉参数的刚性非线性问题似乎有困难。我们提议在本文中研究关于细网格预测和粗网格校正的相同概念,但在定义网格细度,校正网格数以及时间间隔分解方面引入更多的适应性。我们希望改进该方法以解决严格的ODE问题。我们假设我们可以拥有所需数量的处理器(网格体系结构),并且主要重点是减少经过时间,以给定的精度在有限的时间间隔内获得解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号