首页> 外文会议>The Pacific Rim/International, Intersociety Electronic Packaging Technical/Business Conference amp; Exhibition Jul 8-13, 2001, Kauai, Hawaii >NUMERICAL HEAT TRANSFER PREDICTIVE ACCURACY FOR AN IN-LINE ARRAY OF BOARD-MOUNTED PQFP COMPONENTS IN FORCED CONVECTION
【24h】

NUMERICAL HEAT TRANSFER PREDICTIVE ACCURACY FOR AN IN-LINE ARRAY OF BOARD-MOUNTED PQFP COMPONENTS IN FORCED CONVECTION

机译:强制对流中板载PQFP组件的在线阵列的数值传热预测精度

获取原文
获取原文并翻译 | 示例

摘要

Numerical predictive accuracy is assessed for component-Printed Circuit Board (PCB) heat transfer in forced convection using a widely-used, Computational Fluid Dynamics (CFD) based software dedicated for the analysis of electronics cooling. This is achieved by comparing numerical predictions with experimental benchmark data for an in-line array of fifteen, equally spaced, PCB-mounted 160-lead Plastic Quad Flat Pack (PQFP) components. Test case complexity is incremented in controlled steps, from a single component, to components individually powered on the fully populated PCB, to a simultaneously powered configuration exhibiting a high degree of component thermal interaction. Benchmark criteria are based on component steady-state junction temperature and component-PCB surface temperature profiles, measured using thermal test chips and infra-red thermography respectively. These measurements were taken with the test vehicle mounted in a wind tunnel. Component numerical modeling is based on nominal package dimensions and material thermal properties. In the absence of a dominant length scale for describing the fluid flow regime in non-dimensional form, the fluid domain is solved using both laminar and turbulent flow models. Component junction temperature prediction accuracy for the fully powered, populated PCB is typically within +-1℃to +-10℃ (up to 25%). The full complexity of component thermal interaction is shown not to be fully captured. Neither the laminar or turbulent flow model could resolve the complete flow field, suggesting the need for a turbulence model capable of modeling transition. Overall, component junction temperature prediction accuracy would not be sufficient for the predictions to be used as boundary conditions for subsequent reliability and electrical performance analyses.
机译:使用专用于电子冷却分析的广泛使用的基于计算流体动力学(CFD)的软件,对强制对流中的组件印刷电路板(PCB)传热进行了数值预测精度的评估。这是通过将十五个等间距,安装在PCB上的160引脚塑料四方扁平封装(PQFP)组件的串联阵列的数值预测与实验基准数据进行比较来实现的。测试用例的复杂性以受控的步骤增加,从单个组件到在完全填充的PCB上单独供电的组件,再到展现出高度组件热相互作用的同时供电的配置。基准标准基于分别使用热测试芯片和红外热像仪测量的元件稳态结温和元件PCB表面温度曲线。这些测量是将测试车辆安装在风洞中进行的。组件数值建模基于标称包装尺寸和材料热性能。在没有主要长度尺度来描述无量纲形式的流体流动状态的情况下,使用层流模型和湍流模型来求解流体域。对于全功率填充PCB,组件结温的预测精度通常在-1°C至+ -10°C之间(最高25%)。组件热相互作用的全部复杂性未得到完全体现。层流模型或湍流模型都无法解析完整的流场,这表明需要能够对过渡建模的湍流模型。总体而言,组件结温度的预测精度不足以将预测用作后续可靠性和电气性能分析的边界条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号