首页> 外文会议>Optically Based Biological and Chemical Sensing for Defence >Make light, not heat: toward higher efficiency nitride semiconductor ultraviolet optical sources
【24h】

Make light, not heat: toward higher efficiency nitride semiconductor ultraviolet optical sources

机译:发光而不是发热:朝着更高效率的氮化物半导体紫外线光源发展

获取原文
获取原文并翻译 | 示例

摘要

We have used subpicosecond time-resolved photoluminescence (TRPL) downconversion techniques to study the interplay of carrier localization and radiative and nonradiative processes in the active regions of light emitting III-nitride semiconductor ultraviolet optical sources, with the goal of identifying potential approaches that will lead to higher radiative efficiency. Comparison of TRPL in (In)AlGaN multiple quantum well active regions indicate that for addition of only 0.01 In content the PL decay tune in an InAlGaN MQW is more than double that in an AlGaN MQW designed to emit at the same wavelength (360 nm), thus indicating the importance of indium for improvement of material quality, most likely through the suppression of point defects. This result is further underscored by TRPL data on 320 nm InAlGaN MQW active regions, which exhibit longer PL lifetimes than expected for growth on GaN templates with dislocation densities in the mid-10~8cm~(-2) range. While the PL lifetimes in these InAlGaN MQWs improve for growth on lower dislocation density HVPE bulk GaN substrates, a similar phenomenon is not observed for deposition on nearly dislocation-free bulk AlN substrates, suggesting that defect generation in the MQWs associated with lattice mismatch or AlN surface preparation may play an important role. The pump intensity dependence of the time zero signal and the TRPL decays in the MQWs implies that internal electric field-induced recombination through the barriers and interface states plays an important role in the radiative efficiency of quantum well active regions for c-axis oriented materials and devices. The effect of these internal electric fields can be mitigated through the use of nonpolar MQWs. The combination of more intense time-integrated PL spectra and shorter PL lifetimes with decreasing well width in GaN/AlGaN MQWs grown on a-plane LEO GaN for low pump intensity suggests that the radiative lifetime becomes shorter due to the accompanying increase in exciton binding energy and oscillator strength at smaller well width in these high quality samples. Finally, it is demonstrated that compositional fluctuations in AlGaN active regions grown by plasma-assisted MBE can be employed to create spatial localization that enhances the luminescence efficiency and PL lifetime (300-400 ps) despite high defect density (>10~(10)cm~(-2)) by inhibiting movement of carriers to nonradiative sites. Significant enhancement of this phenomenon has been obtained in a DH LED structure grown on a lower defect density (mid-10~9cm~(-2)) AlGaN template, with PL lifetime increased by nearly a factor of two, corresponding to a defect density in the mid-10~7cm~(-2) range, and only a 3.3 times drop in PL intensity when the temperature is raised from 12 K to room temperature, suggesting up to ~30% internal quantum efficiency.
机译:我们已经使用了亚皮秒时间分辨光致发光(TRPL)下转换技术来研究载流子定位与发光III-氮化物半导体紫外光源的有源区域中的辐射和非辐射过程之间的相互作用,以期找出可能导致更高的辐射效率。 (In)AlGaN多量子阱有源区中TRPL的比较表明,仅添加0.01 In含量,InAlGaN MQW中的PL衰减调谐是设计为以相同波长(360 nm)发射的AlGaN MQW中PL衰减的两倍以上。因此,表明铟对于改善材料质量的重要性,很可能是通过抑制点缺陷来实现的。 320 nm InAlGaN MQW有源区域上的TRPL数据进一步强调了这一结果,该区域显示的PL寿命比位错密度在10〜8cm〜(-2)范围内的GaN模板上的生长预期更长。尽管这些InAlGaN MQW中的PL寿命因在较低位错密度的HVPE块状GaN衬底上的生长而提高,但在几乎无位错的块状AlN衬底上沉积时未观察到类似现象,这表明MQWs中与晶格失配或AlN相关的缺陷产生表面处理可能起重要作用。零时信号和TRPL衰减在MQW中的泵浦强度依赖性表明,内部电场诱导的通过势垒和界面态的复合在c轴取向材料的量子阱有源区的辐射效率中起着重要作用。设备。这些内部电场的影响可以通过使用非极性MQW来减轻。在低平面泵浦强度下在a面LEO GaN上生长的GaN / AlGaN MQW中,更强的时间积分PL光谱和更短的PL寿命以及阱宽度减小的结合,表明由于激子结合能的增加,辐射寿命变得更短在这些高质量样品中,孔宽度较小时的振荡器强度也很高。最后证明,尽管缺陷密度高(> 10〜(10),但通过等离子体辅助MBE生长的AlGaN有源区中的成分波动可用于产生空间定位,从而提高发光效率和PL寿命(300-400 ps)。抑制载体移动到非辐射部位。这种现象在缺陷密度较低(-10〜9cm〜(-2)中)AlGaN模板上生长的DH LED结构中得到了显着增强,PL寿命增加了将近两倍,对应于缺陷密度在10〜7cm〜(-2)的中值范围内,当温度从12 K升高到室温时,PL强度仅下降3.3倍,表明内部量子效率高达〜30%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号