首页> 外文会议>Optical trapping and optical micromanipulation VII >Optical trapping meets atomic force microscopy: A precision forcemicroscope for biophysics
【24h】

Optical trapping meets atomic force microscopy: A precision forcemicroscope for biophysics

机译:光学捕获与原子力显微镜相遇:用于生物物理学的精密力 r n显微镜

获取原文
获取原文并翻译 | 示例

摘要

Mechanical drift between an atomic force microscope (AFM) tip and sample is a longstanding problem that limits tip-sample stability, registration, and the signal-to-noise ratio during imaging. We demonstrate a robust solution to drift that enables novel precision measurements, especially of biological macromolecules in physiologically relevant conditions. Our strategy - inspired by precision optical trapping microscopy - is to actively stabilize both the tip and the sample using locally generated optical signals. In particular, we scatter a laser off the apex of commercial AFM tips and use the scattered light to locally measure and thereby actively control the tip's three-dimensional position above a sample surface with atomic precision in ambient conditions. With this enhanced stability, we overcome the traditional need to scan rapidly while imaging and achieve a 5-fold increase in the image signal-to-noise ratio. Finally, we demonstrate atomic-scale (~100 pm) tip-sample stability and registration over tens of minutes with a series of AFM images. The stabilization technique requires low laser power (<1 mW), imparts a minimal perturbation upon the cantilever, and is independent of the tip-sample interaction. This work extends atomic-scale tip-sample control, previously restricted to cryogenic temperatures and ultrahigh vacuum, to a wide range of perturbative operating environments.
机译:原子力显微镜(AFM)针尖和样品之间的机械漂移是一个长期存在的问题,它限制了针尖样品的稳定性,配准以及成像期间的信噪比。我们展示了一种可靠的漂移解决方案,能够实现新颖的精确测量,尤其是在生理相关条件下对生物大分子的测量。受精密光学捕获显微镜启发,我们的策略是使用本地产生的光信号主动稳定尖端和样品。特别是,我们将激光从商业AFM尖端的顶端散射,并使用散射光进行局部测量,从而在环境条件下以原子精度主动控制尖端在样品表面上方的三维位置。凭借这种增强的稳定性,我们克服了传统的在成像时快速扫描的需求,并使图像信噪比提高了5倍。最后,我们用一系列AFM图像演示了原子级(约100 pm)尖端样品的稳定性和在数十分钟内的配准。稳定技术需要低激光功率(<1 mW),在悬臂上产生最小的扰动,并且与针尖样品相互作用无关。这项工作将以前仅限于低温和超高真空的原子级吸头样品控制扩展到了广泛的微扰操作环境。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号