首页> 外文会议>Optical Pattern Recognition XXVI >Numerical implementation of the multiple image optical compression and encryption technique
【24h】

Numerical implementation of the multiple image optical compression and encryption technique

机译:多图像光学压缩加密技术的数值实现

获取原文
获取原文并翻译 | 示例

摘要

In this study, we propose a numerical implementation (using a GPU) of an optimized multiple image compression and encryption technique. We first introduce the double optimization procedure for spectrally multiplexing multiple images. This technique is adapted, for a numerical implementation, from a recently proposed optical setup implementing the Fourier transform (FT). The new analysis technique is a combination of a spectral fusion based on the properties of FT, a specific spectral filtering, and a quantization of the remaining encoded frequencies using an optimal number of bits. The spectral plane (containing the information to send and/or to store) is decomposed in several independent areas which are assigned according a specific way. In addition, each spectrum is shifted in order to minimize their overlap. The dual purpose of these operations is to optimize the spectral plane allowing us to keep the low- and high-frequency information (compression) and to introduce an additional noise for reconstructing the images (encryption). Our results show that not only can the control of the spectral plane enhance the number of spectra to be merged, but also that a compromise between the compression rate and the quality of the reconstructed images can be tuned. Spectrally multiplexing multiple images defines a first level of encryption. A second level of encryption based on a real key image is used to reinforce encryption. Additionally, we are concerned with optimizing the compression rate by adapting the size of the spectral block to each target image and decreasing the number of bits required to encode each block. This size adaptation is realized by means of the root-mean-square (RMS) time-frequency criterion. We have found that this size adaptation provides a good trade-off between bandwidth of spectral plane and number of reconstructed output images. Secondly, the encryption rate is improved by using a real biometric key and randomly changing the rotation angle of each block before spectral fusion. A numerical implementation of this method using two numerical devices (CPU and GPU) is presented.
机译:在这项研究中,我们提出了一种优化的多图像压缩和加密技术的数值实现(使用GPU)。我们首先介绍用于频谱复用多个图像的双重优化过程。对于数字实现,该技术适用于最近提出的实现傅里叶变换(FT)的光学装置。新的分析技术是基于FT属性的频谱融合,特定频谱过滤以及使用最佳位数对剩余编码频率进行量化的组合。光谱平面(包含要发送和/或存储的信息)在几个独立的区域中分解,这些区域按特定方式分配。此外,每个频谱都会移动,以使其重叠最小化。这些操作的双重目的是优化频谱平面,使我们能够保留低频和高频信息(压缩),并引入额外的噪声来重建图像(加密)。我们的结果表明,不仅可以控制光谱平面来增加要合并的光谱数量,而且可以调整压缩率和重建图像质量之间的折衷。频谱复用多个图像定义了第一级加密。基于真实密钥图像的第二级加密用于加强加密。另外,我们关注通过使频谱块的大小适合每个目标图像并减少编码每个块所需的位数来优化压缩率。通过均方根(RMS)时频标准来实现这种大小自适应。我们已经发现,这种尺寸适配在频谱平面的带宽和重构的输出图像的数量之间提供了良好的折衷。其次,通过使用真实的生物识别密钥并在频谱融合之前随机改变每个块的旋转角度来提高加密率。提出了使用两个数值设备(CPU和GPU)对该方法进行数值实现的方法。

著录项

  • 来源
    《Optical Pattern Recognition XXVI》|2015年|94770M.1-94770M.5|共5页
  • 会议地点 Baltimore MD(US)
  • 作者单位

    Actris Brest, 24, Rue Victor Grignard - Guipavas - BP 30143 - 29803 BREST Cedex 9 - France,Equipe Vision, L@BISEN, ISEN-Brest, 20 rue Cuirasse Bretagne CS 42807, 29228 Brest Cedex 2, France;

    Equipe Vision, L@BISEN, ISEN-Brest, 20 rue Cuirasse Bretagne CS 42807, 29228 Brest Cedex 2, France;

    Equipe Vision, L@BISEN, ISEN-Brest, 20 rue Cuirasse Bretagne CS 42807, 29228 Brest Cedex 2, France;

    Lab-STICC, Universite de Brest, CS 93837, 6 Avenue le Gorgeu, 29238 Brest Cedex 3, France;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    compression; encryption; GPU; RMS;

    机译:压缩;加密; GPU;均方根值;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号