首页> 外文会议>Optical fabrication, testing, and metrology III >Applications and benefits of 'perfectly bad' optical surfaces
【24h】

Applications and benefits of 'perfectly bad' optical surfaces

机译:“完全不良”光学表面的应用和优势

获取原文
获取原文并翻译 | 示例

摘要

The design and manufacture of most optical systems revolves around the use of ideal optical surfaces. "Perfect" spheres or flats are optimally combined and toleranced during the design phase, and the manufacturers attempt to get as close as possible to these perfect optical surfaces during fabrication. One reason for this stems from the inherent capabilities of the industry's oldest and most pervasive polishing tool: the full-aperture lap. The shape and motion of these tools naturally produce spherical or flat geometries. More recently, a number of new manufacturing technologies based on sub-aperture polishing tools have become available. Sub-aperture tools enable local, preferential removal: a controlled way to polish more material at some locations and less at others. Magnetorheological Finishing (MRF®) is one such sup-aperture polishing technology, and when combined with an accurate measurement, can offer a precise method for converging to the perfect surface: local removal based directly on measured surface height. This capability, however, can also be leveraged in other, more creative, ways. For example, by replacing the typical surface-error measurement by a transmitted wavefront measurement of an entire low-field optical system, a hitmap can be created for one surface in the system that will perfectly compensate for errors of all the other surfaces. This paper will explore a number of examples where "perfectly bad" surfaces have been exploited in actual optical systems to improve performance, improve manufacturability, or reduce cost. In addition, we will ask the question: if making a "perfectly bad" surface was as easy as making a perfectly good one, would this capability be used more widely by the precision optics industry?
机译:大多数光学系统的设计和制造都围绕使用理想的光学表面。在设计阶段,“完美”的球体或平面会得到最佳组合和公差,制造商会在制造过程中尽可能接近这些完美的光学表面。原因之一是行业最古老,最普及的抛光工具的固有功能:全开孔研磨圈。这些工具的形状和运动自然会产生球形或平坦的几何形状。最近,已经出现了许多基于子孔径抛光工具的新制造技术。子光圈工具可实现局部优先去除:一种受控的方式,可以在某些位置抛光更多的材料,而在其他位置抛光更少的材料。磁流变抛光(MRF®)是一种这样的超孔径抛光技术,当与精确测量结合使用时,可以提供一种收敛到理想表面的精确方法:直接基于测量的表面高度进行局部去除。但是,也可以通过其他更具创造性的方式来利用此功能。例如,通过用整个低场光学系统的透射波阵面测量代替典型的表面误差测量,可以为系统中的一个表面创建一个命中图,它将完美地补偿所有其他表面的误差。本文将探讨许多示例,这些示例在实际的光学系统中利用了“完全不良”的表面来改善性能,提高可制造性或降低成本。另外,我们将提出一个问题:如果制造“完美坏”的表面与制造完美的表面一样容易,这种功能是否会被精密光学行业广泛使用?

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号