首页> 外文会议>Optical Constants of Materials for UV to X-Ray Wavelengths >Measuring Optical Constants from the UV to X-ray Wavelengths; how it was (and is) done
【24h】

Measuring Optical Constants from the UV to X-ray Wavelengths; how it was (and is) done

机译:测量从紫外线到X射线波长的光学常数;它是怎么做的

获取原文
获取原文并翻译 | 示例

摘要

Optical constants of solids, n the index of refraction, and k the extinction coefficient, are essential for designing components for use in optical instruments, i.e., reflectors, transmitters, etc. In the UV region (4000 - 2000 A) there are many transmitting glasses and crystals from which ellipsometers can be constructed, consequently extensive use of ellipsometry over the long wavelength part of this region can provide index of refraction values of non-absorbing media accurate to five significant figures. As the wavelength decreases, however, the ellipsometric technique becomes difficult because the components of the measuring apparatus become absorbing. In the extreme ultraviolet (XUV) from 2.000 to 2 A less precise techniques are used. Over most of this region the reflectance vs. angle of incidence (R vs. φ) method is the mainstay. Such n,k measurements can be accurate to three significant figures, seldom more. Furthermore, the method is n,k dependent, i.e., in certain regions of the n,k plane the precision for n or k becomes less than three significant figures while the other value may be more precise; an n,k uncertainty principle. Some ellipsometric instrumentation has been developed for the XUV but the spectral range is limited. Other techniques are available for limited spectral ranges; for example, measuring n from R vs. φ curves and measuring k from transmission through thin films, measuring R at near normal incidence over extended wavelength ranges and using the Kramers-Kronig (KK) relations to obtain n,k. Non-optical techniques, such as bombardment of unbacked films with electrons to determine the location and shape of their plasmon oscillation, are useful for limited wavelength ranges.
机译:固体的光学常数,n折射率和k消光系数对于设计用于光学仪器的组件(例如反射镜,发射器等)至关重要。在UV区域(4000-2000 A)中,有许多透射光可以从中构造椭圆仪的玻璃和晶体,因此在该区域的长波部分上广泛使用椭圆仪可以提供精确到五个有效数字的非吸收性介质的折射率值。然而,随着波长减小,由于测量设备的组件被吸收,因此椭圆偏振技术变得困难。在2.000至2的极紫外(XUV)中,使用了不太精确的技术。在该区域的大部分区域,反射率与入射角(R与φ)方法是主要的方法。这样的n,k个测量可以精确到三个有效数字,很少。此外,该方法是依赖于n,k的,即,在n,k平面的某些区域中,n或k的精度变得小于三个有效数字,而另一个值可能更精确。 n,k不确定性原理。已经为XUV开发了一些椭圆仪,但是光谱范围受到限制。其他技术可用于有限的光谱范围。例如,从R与φ曲线测量n,从薄膜透射率测量k,在扩展波长范围内以接近法线入射的方式测量R,并使用Kramers-Kronig(KK)关系式获得n,k。非光学技术,例如用电子轰击无背衬薄膜以确定其等离子体激元振荡的位置和形状,对于有限的波长范围很有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号