首页> 外文会议>Optical components and materials VII >Simulation based design for back-side illuminated ultrahigh-speed CCDs
【24h】

Simulation based design for back-side illuminated ultrahigh-speed CCDs

机译:基于仿真的背面照明超高速CCD设计

获取原文
获取原文并翻译 | 示例

摘要

A structure for backside illuminated ultrahigh-speed charge coupled devices (CCDs) designed to improve the light sensitivity was investigated. The structure's shooting speed of 1 million frames/second was made possible by directly connecting CCD memories, which record video images, to the photodiodes of individual pixels. The simultaneous parallel recording operation of all pixels results in the highest possible frame rate. Because back-side illumination enables a fill factor of 100 % and a quantum efficiency of 60 %, sensitivity ten or more times that of front-side illumination can be achieved. Applying backside illumination to ultrahigh-speed CCDs can thus solve the problem of a lack of incident light. An n- epitaxial layer/p- epitaxial layer/p+ substrate structure was created to collect electrons generated at the back side traveling to the collection gate. When a photon reaches the deep position near the CCD memory in the p-well, an electron generated by photoelectric conversion directly mixes into the CCD memory. This mixing creates noise, making it necessary to reduce the reach of the incident light. Setting the thickness of a double epitaxial layer to 30 μm, however, will inhibit the generation of this noise. A potential profile for the n-/p-/p+ structure was calculated using a three-dimensional semiconductor device simulator. The transit time from electron generation to arrival at the collection gate was also calculated. The concentrations of the n- and p- epitaxial layers were optimized to minimize transit time, which was ultimately 1.5 ns. This value is adaptive to a frame rate of 100 million frames/second. Charge transfer simulation of a part of the pixel was conducted to confirm the smooth transfer of electrons without their staying too long in one place.
机译:研究了用于提高光灵敏度的背面照明超高速电荷耦合器件(CCD)的结构。通过将记录视频图像的CCD存储器直接连接到单个像素的光电二极管,该结构的拍摄速度达到了100万帧/秒。所有像素的同时并行记录操作会导致最高的帧速率。由于背面照明可实现100%的填充系数和60%的量子效率,因此灵敏度可达到正面照明的十倍或更多倍。因此,将背面照明应用于超高速CCD可以解决入射光不足的问题。创建n-外延层/ p-外延层/ p +衬底结构以收集在背面行进到收集栅的电子。当光子到达p阱中CCD存储器附近的较深位置时,通过光电转换产生的电子直接混合到CCD存储器中。这种混合会产生噪声,因此有必要减小入射光的范围。但是,将双外延层的厚度设置为30μm将抑制该噪声的产生。使用三维半导体器件模拟器计算出n- / p- / p +结构的电势曲线。还计算了从电子产生到到达收集门的过渡时间。对n和p外延层的浓度进行了优化,以使传输时间最短,最终为1.5 ns。此值适用于1亿帧/秒的帧速率。进行了一部分像素的电荷转移模拟,以确认电子的平稳转移,而不会在一个地方停留太长时间。

著录项

  • 来源
    《Optical components and materials VII》|2010年|P.75980X.1-75980X.9|共9页
  • 会议地点 San Francisco CA(US)
  • 作者单位

    NHK Science Technology Research Laboratories, 1-10-11 Kinuta, Setagaya-ku, Tokyo 157-8510, Japan;

    rnNHK Science Technology Research Laboratories, 1-10-11 Kinuta, Setagaya-ku, Tokyo 157-8510, Japan;

    rnNHK Science Technology Research Laboratories, 1-10-11 Kinuta, Setagaya-ku, Tokyo 157-8510, Japan;

    rnNHK Science Technology Research Laboratories, 1-10-11 Kinuta, Setagaya-ku, Tokyo 157-8510, Japan;

    rnNHK Science Technology Research Laboratories, 1-10-11 Kinuta, Setagaya-ku, Tokyo 157-8510, Japan;

    rnKinki University, 3-4-1 Kowakae, Higashi-Oosaka, Oosaka 577-8502, Japan;

    rnKinki University, 3-4-1 Kowakae, Higashi-Oosaka, Oosaka 577-8502, Japan;

    rnKinki University, 3-4-1 Kowakae, Higashi-Oosaka, Oosaka 577-8502, Japan;

    rnDALSA Professional Imaging, High Tech Campus 27, M/S 14, 5656AE, Eindhove;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 TB342;
  • 关键词

    back-side illuminated; BSI; high-speed CCD; high-speed camera; ISIS;

    机译:背面照明; BSI;高速CCD;高速相机;伊斯兰国;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号