首页> 外文会议>SPIE Conference on Optical Components and Materials >Simulation based design for back-side illuminated ultrahigh-speedCCDs
【24h】

Simulation based design for back-side illuminated ultrahigh-speedCCDs

机译:基于模拟的背面设计UltraHigh-Suppigh-Suppachds

获取原文

摘要

A structure for backside illuminated ultrahigh-speed charge coupled devices (CCDs) designed to improve the light sensitivity was investigated. The structure's shooting speed of 1 million frames/second was made possible by directly connecting CCD memories, which record video images, to the photodiodes of individual pixels. The simultaneous parallel recording operation of all pixels results in the highest possible frame rate. Because back-side illumination enables a fill factor of 100 % and a quantum efficiency of 60 %, sensitivity ten or more times that of front-side illumination can be achieved. Applying backside illumination to ultrahigh-speed CCDs can thus solve the problem of a lack of incident light. An n- epitaxial layer/p- epitaxial layer/p+ substrate structure was created to collect electrons generated at the back side traveling to the collection gate. When a photon reaches the deep position near the CCD memory in the p-well, an electron generated by photoelectric conversion directly mixes into the CCD memory. This mixing creates noise, making it necessary to reduce the reach of the incident, light. Setting the thickness of a double epitaxial layer to 30 μm, however, will inhibit the generation of this noise. A potential profile for the n-/p-/p+ structure was calculated using a three-dimensional semiconductor device simulator. The transit time from electron generation to arrival at the collection gate was also calculated. The concentrations of the n- and p- epitaxial layers were optimized to minimize transit time, which was ultimately 1.5 ns. This value is adaptive to a frame rate of 100 million frames/second. Charge transfer simulation of a part of the pixel was conducted to confirm the smooth transfer of electrons without their staying too long in one place.
机译:研究了设计用于改善光敏性的背面照明的超高速度电荷耦合器件(CCD)的结构。通过直接将CCD存储器录制到各个像素的光电二极管,可以通过直接连接CCD存储器来实现1百万帧/秒的结构的拍摄速度。所有像素的同时并行记录操作导致最高可能的帧速率。由于背面照明使得能够实现100%的填充因子,并且量子效率为60%,敏感性10倍的前侧照明的次数。因此,将背面照明应用于超高速CCD,因此可以解决缺乏入射光的问题。产生N-外延层/ p-外延层/ P +衬底结构,以收集在向收集栅极的后侧产生的电子。当光子在P阱中达到CCD存储器附近的深位置时,通过光电转换产生的电子直接混合到CCD存储器中。这种混合会产生噪音,使得有必要减少事件的范围,光线。然而,将双外延层的厚度设定为30μm,将抑制这种噪声的产生。使用三维半导体器件模拟器计算N-/ P-/ P +结构的潜在轮廓。还计算了从电子生成到达收集门的运输时间。优化N-和P-外延层的浓度以最大限度地减少最终1.5ns的过渡时间。该值适用于帧速率为1亿帧/秒。对像素的一部分的电荷传递仿真进行,以确认电子的平滑转移,在一个地方没有它们的保持时间太长。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号