首页> 外文会议>Offshore Technology Conference;ExxonMobil;FMCTechnologies;Schlumberger >Fabrication Challenges for the Aasta Hansteen SCRs and Flowlines
【24h】

Fabrication Challenges for the Aasta Hansteen SCRs and Flowlines

机译:Aasta Hansteen SCR和流水线的制造挑战

获取原文
获取原文并翻译 | 示例

摘要

Exploitation of the Aasta Hansteen field presented major challenges across several engineering disciplines.rnIn addition to being the deepest development in the North Sea and involving the world’s largestrnSPAR gas platform, the Aasta Hansteen project also required the fabrication and installation by reel-layrnof steel catenary risers (SCRs) in heavy wall carbon steel and metallurgically clad pipe, together withrnmechanically lined (BuBi®) flowlines, which comprised the Subsea7 work scope.rnFabrication of the SCRs (12" × 25.6mm + 3mm 316L clad pipe, 14"× 28.6mm carbon steel (CS)rnpipe) and flowlines (12" × 19.7 + 3mm 316L BuBi® pipe) required the achievement of critical weldrnacceptance criterion especially in the fatigue sensitive zones for which no weld repairs were permissible.rnThe maximum allowable flaw height as determined by Automatic Ultrsonic Testing (AUT) was 1.5mm.rnThe weld solution for fabrication of the pipeline stalks at the spoolbase was based on the mechanisedrn"Cold Metal Transfer"/Pulsed Gas Metal Arc Welding (CMT/PGMAW) processes for both carbon steelrnand clad/lined pipe. An extensive pre-production development programme was executed to ensure that thernsignificant technical challenges were overcome whilst maintaining the use of cost effective weldingrnsolutions. Achievement of the exacting weld quality requirements and fatigue performance required steprnchanges in welding and non-destructive examination (NDE) process technologies to be accomplished asrnfollows:rn1. Development of optimised CMT and PGMAW waveformsrn2. Internal inspection using state of the laser/camera technologyrn3. Advanced AUT using Phased Array probes together creep wave for near surface inspectionrnAn extensive welding qualification programme was carried out which included some novel testingrnmethodologies relative to current North Sea practices. For the carbon steel weld, workmanship weldrnacceptance criterion, based on an assumed toughness level and confirmed by project specific testing, werernadopted in lieu of a conventional engineering critical assessment (ECA). Adequate fatigue performancernwas demonstrated by full scale fatigue testing of girth welds containing controlled flawsrnIn addition to welding and NDE technology improvements, a full pipe body demagnetisation facilityrnwas developed and installed in the Vigra spoolbase. Previous experience with clad/lined pipe hadrnhighlighted the susceptibility of these pipe materials to residual magnetism which can cause severe arc instabilities or ‘arc blow’ during welding. This can result in reduced productivity and loss of weld quality.rnThe introduction of this new demagnetisation technology ensured that pipe material completely free ofrnresidual magnetism was delivered to the firing line thereby eliminating any risk of arc blow in production.rnFollowing completion of the engineering activities, the fabrication campaign was successfully executedrnat the Vigra, spoolbase in Norway during early 2015. Fabrication performance exceeded both productionrnand quality targets with repair rates for the SCRs below 0.5%rnThe project involved major improvements in welding and NDE technologies which enabled highrnquality welds to be manufactured with the use of cost effective welding solutions. The use of the full pipernbody demagnetisation technology at the spoolbase also represented an industry first.
机译:Aasta Hansteen油田的开发提出了跨多个工程学科的重大挑战。rn除了是北海最深的开发项目并涉及世界上最大的rnSPAR天然气平台以外,Aasta Hansteen项目还需要由绞盘-雷诺夫钢悬链式立管制造和安装重壁碳钢和冶金复合管中的(SCR)以及带有机械衬里(BuBi®)的流水线,构成Subsea7工作范围。rn SCR的制造(12“×25.6mm + 3mm 316L复合管,14”×28.6mm碳钢(CS)管和流水线(12“×19.7 + 3mm 316LBuBi®管)要求达到关键的焊接验收标准,尤其是在不允许进行焊缝修复的疲劳敏感区域。允许的最大缺陷高度由自动超声波测试(AUT)为1.5mm.rn。用于在阀芯基座上制造管道杆的焊接解决方案基于机械化的“冷M”碳钢和包层/内衬管的“ etal Transfer” /脉冲气体电弧焊(CMT / PGMAW)工艺。执行了广泛的生产前开发计划,以确保克服重大的技术难题,同时保持使用经济高效的焊接解决方案。要达到严格的焊接质量要求和疲劳性能,需要在焊接和无损检查(NDE)工艺技术上进行逐步更改,以实现以下目标:rn1。优化CMT和PGMAW波形的开发2。使用激光/相机技术的状态进行内部检查rn3。使用相控阵探头和蠕变波进行高级AUT进行近表面检测rn进行了广泛的焊接鉴定计划,其中包括一些与当前北海实践有关的新颖的检测方法。对于碳钢焊缝,采用了基于假定的韧性水平并通过项目特定测试确认的工艺焊接接受标准,以代替常规的工程关键评估(ECA)。通过对包含受控缺陷的环缝焊缝进行全面疲劳测试,可以证明其具有足够的疲劳性能。除了对焊接和NDE技术的改进以外,还已在Vigra阀芯底座中开发并安装了完整的管体去磁设施。以前使用包层/衬里管道的经验突显了这些管道材料易受残留磁性的影响,这种残留磁性会在焊接过程中引起严重的电弧不稳定或“电弧爆炸”。这可能会导致生产率降低和焊接质量下降。rn引入这种新的消磁技术可确保将完全没有残留磁性的管道材料输送到燃烧线,从而消除了生产中产生电弧的风险。rn在完成工程活动之后,该制造活动已于2015年初在挪威的维格拉(Vigra)线轴基地成功实施。制造性能超过了生产和质量指标,SCR的修复率低于0.5%。该项目涉及焊接和NDE技术的重大改进,从而能够制造出高质量的焊缝。使用经济有效的焊接解决方案。线轴上使用完整的管体去磁技术也代表了行业第一。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号