【24h】

Root-Polynomial Colour Correction

机译:根多项式色彩校正

获取原文
获取原文并翻译 | 示例

摘要

Cameras record three colour responses (RGB) which are devicerndependent i.e. different cameras will produce different RGBrnresponses for the same scene. Moreover, the RGB responses dornnot correspond to the device-independent tristimulus values as definedrnby the CIE. The most common method for mapping RGBs tornXYZs is the simple 3×3 linear transform (usually derived throughrnregression). While this mapping can work well it does sometimesrnmap RGBs to XYZs with high error. On the plus side the linearrntransform is independent of camera exposure. An alternativernand on the face of it more powerful, method for colour correctionrnis polynomial regression. Here, the RGB at a pixel is augmentedrnby polynomial terms e.g up to second order RGB mapsrnto the 9-vector (R,G,B,R~2,G~2,B~2,RG,RB,GB). With respect to thisrnpolynomial expansion colour correction is a 9×3 linear transform.rnFor a given calibration set-up polynomial regression canrnwork very well indeed and can reduce colorimetric error by morernthan 50%. However, unlike linear maps the polynomial fit dependsrnon exposure: as exposure changes the vector of polynomialrncomponents alters in a non linear way. In this paper we propose arnnew polynomial-type regression which we call ‘Root-PolynomialrnColour Correction’. Our idea is to take each term in a polynomialrnexpansion and take its kth root of each k-order term. For the 2ndrnorder polynomial expansion the corresponding independent rootrnterms are R,G,B,√RG,√RB and√GB (6 independent terms insteadrnof 9: the first roots of R, G and B equal the 2~(nd) roots of R~2,rnG~2 and B~2). It is easy to show terms defined in this way scale withrnexposure and so a 6×3 regression mapping can be used for colourrncorrection. Encouragingly, our initial experiments demonstraternthat root-polynomial colour correction enhances colour correctionrnperformance on real and synthetic data.
机译:相机会记录三个与设备有关的颜色响应(RGB),即不同的相机将针对同一场景产生不同的RGBr响应。此外,RGB响应不对应于CIE定义的与设备无关的三刺激值。映射RGB tornXYZ的最常见方法是简单的3×3线性变换(通常通过回归导出)。尽管此映射可以很好地工作,但有时确实会将RGB映射到XYZ且误差很大。从正面看,线性变换与摄影机曝光无关。从表面上看,它是一种更强大的颜色校正方法-多项式回归。这里,像素处的RGB通过多项式项增加,例如直到9位矢量(R,G,B,R_2,G_2,B_2,RG,RB,GB)的二阶RGB映射。关于此多项式展开,颜色校正是9×3线性变换。对于给定的校准设置,多项式回归确实可以很好地完成工作,并且可以将比色误差减少50%以上。但是,与线性映射不同,多项式拟合取决于曝光:随着曝光变化,多项式分量的矢量以非线性方式变化。在本文中,我们提出了arnnew多项式回归,我们将其称为“ Root-PolynomialrnColour Correction”。我们的想法是在多项式展开中取每个项,并取每个k阶项的第k个根。对于二阶多项式展开,相应的独立根项是R,G,B,√RG,√RB和√GB(代替6个独立项rnof 9:R,G和B的第一根等于R的2〜(nd)根〜2,rnG〜2和B〜2)。很容易显示以这种方式定义的术语,而不用比例曝光,因此可以使用6×3回归映射进行色彩校正。令人鼓舞的是,我们的初步实验表明,根多项式颜色校正可增强对实数据和合成数据的颜色校正性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号