首页> 外文会议>Next-generation optical communication: components, sub-systems, and systems II >Mathematical and system level HW description DSP algorithms modeling investigation in an experimental 100G optical coherent system
【24h】

Mathematical and system level HW description DSP algorithms modeling investigation in an experimental 100G optical coherent system

机译:数学和系统级硬件描述实验性100G光相干系统中的DSP算法建模研究

获取原文
获取原文并翻译 | 示例

摘要

Today and next generation optical coherent systems rely more and more in DSP algorithms to improve capacity, spectral efficiency and fiber impairments mitigation. The amount of signal processing is remarkable, and because of that ASICs are preferable in order to comply with cost, power consumption and size, required in OIF 100G optical module standards. One important step in the ASIC development process is the validation of the DSP algorithms mathematical models in a high level language that consider HW characteristics and constrains. In this work we present, compare and evaluate in experimental data the mathematical model developed in Matlab and the SystemC model developed in C++. The DSP algorithms functionalities implemented were orthonormalization, CD equalizer, clock recovery, dynamic equalizer, frequency offset and phase estimation. The SystemC model considers clock signals, reset/enable structures, parallelization, finite fixed-point operations and structures that are closer to the ASIC HW implementation; due to these restrictions the performance is not as good as the mathematical modeling. The DSP algorithms models are evaluated in two 112 Gbit/s DP-QPSK experimental scenarios. In the first scenario the models are evaluated in back-to-back with ASE noise loading; in the second scenario the models are compared in a 226km optical fiber recirculation loop, with 80×112 Gbit/s DP-QPSK channels (8.96 Tbit/s). In the back-to-back experiment the OSNR penalty from the mathematical model to the SystemC model is only 1,0dB and in the recirculation loop the maximum reach is 2,600 km and 2,200 km for the Matlab and SystemC models respectively.
机译:当今和下一代的光学相干系统越来越依赖DSP算法来提高容量,频谱效率和减轻光纤损伤。信号处理的数量非常可观,因此,为了符合OIF 100G光模块标准所需的成本,功耗和尺寸,首选ASIC。 ASIC开发过程中的重要一步是采用高级语言验证考虑硬件特性和约束的DSP算法数学模型。在这项工作中,我们介绍,比较和评估实验数据中在Matlab中开发的数学模型和在C ++中开发的SystemC模型。所实现的DSP算法功能包括正交归一化,CD均衡器,时钟恢复,动态均衡器,频率偏移和相位估计。 SystemC模型考虑了时钟信号,复位/使能结构,并行化,有限的定点运算和更接近ASIC硬件实现的结构。由于这些限制,其性能不如数学建模。在两个112 Gbit / s DP-QPSK实验方案中评估了DSP算法模型。在第一种情况下,使用ASE噪声负载对模型进行背对背评估。在第二种情况下,将模型在226公里的光纤循环环路中进行比较,该环路具有80×112 Gbit / s的DP-QPSK通道(8.96 Tbit / s)。在背对背实验中,从数学模型到SystemC模型的OSNR损失仅为1,0dB,在再循环环路中,对于Matlab和SystemC模型,最大距离分别为2,600 km和2,200 km。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号