首页> 外文会议>New materials and processes for a new economy >ADVANCED ANODES FOR LITHIUM ION BATTERIES FROM SILICON MODIFIED NANOFIBERS
【24h】

ADVANCED ANODES FOR LITHIUM ION BATTERIES FROM SILICON MODIFIED NANOFIBERS

机译:硅改性纳米粉锂离子电池的高级阳极

获取原文
获取原文并翻译 | 示例

摘要

Owing to their relatively high energy density and specific energy, lithium ion batteries are the most attractive energy storage option for applications which have weight and size constraints. However, for certain applications, such as soldier power, unmanned vehicles, directed energy weapons, and all-electric vehicles, the existing state-of-the-art technology is not sufficient to meet current needs. Advances in the anode, cathode, and electrolyte are needed. Carbon and graphite materials are commonly used as the anode in lithium ion batteries owing to their high cycle life and low cost but typically have an energy capacity of 250 mAh/g and significant irreversible charge capacity of approximately 20%. Because of increased power demand and the perceived high potential from Li-ion chemistry, a worldwide competition is underway for development of materials with enhanced energy density and power capabilities for Li-ion batteries, to enable a three-fold or higher increase in battery performance. Recent research into materials that form alloys with lithium is showing significant improvement in the energy density (ED) and specific energy (SE) of current anode materials made from carbon alone. This paper reports a method of achieving a charge capacity of 1000 mAh/g in a Si/CNF anode, a four-fold improvement in charge capacity over existing graphitic anodes for lithium ion batteries.
机译:由于其相对较高的能量密度和比能,锂离子电池是具有重量和尺寸限制的应用中最具吸引力的储能选择。但是,对于某些应用,例如士兵动力,无人驾驶车辆,定向能武器和全电动车辆,现有的最新技术不足以满足当前的需求。需要在阳极,阴极和电解质方面取得进展。由于碳和石墨材料的高循环寿命和低成本,它们通常被用作锂离子电池的负极,但是通常具有250 mAh / g的能量容量和大约20%的不可逆充电容量。由于功率需求的增加以及锂离子化学技术的巨大潜力,正在进行世界范围的竞争,以开发具有增强的能量密度和功率性能的锂离子电池材料,以使电池性能提高三倍或更高。 。对与锂形成合金的材料的最新研究表明,仅由碳制成的当前负极材料的能量密度(ED)和比能(SE)都有显着提高。本文报道了一种在Si / CNF阳极中实现1000 mAh / g充电容量的方法,该充电容量是现有锂离子电池石墨阳极充电容量的四倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号