首页> 外文会议>Near-surface geophysics and urbanization >Recent Advances in High-Frequency Surface-wave Methods
【24h】

Recent Advances in High-Frequency Surface-wave Methods

机译:高频表面波方法的最新进展

获取原文
获取原文并翻译 | 示例

摘要

Multi-channel Analysis of Surface Waves (MASW) analyzes high-frequency Rayleigh waves to determine near-surface shear (S)-wave velocities.The method is getting increasingly attention in the near-surface geophysics and geotechnique community in the past 20 years because of its non-invasive,non-destructive,efficient,and low-cost advantages.They are viewed by near-surface geophysics community as one of most promise techniques in the future.However,they face unique problems related to extremely irregular velocity variations in near-surface geology or man-made constructions,for example,highway,foundation,dam,levee,jetty,etc.,which are not solvable by techniques or algorithms widely used in earthquake seismology or oil/gas seismic exploration.Calculation of dispersion curves by existing algorithms may fail for some special velocity models due to velocity inverse (a high-velocity layer on the top of a low-velocity layer).Two velocity models are most common in near-surface applications.One is a low-velocity half space model and the other a high-velocity surface layer.The former model results in a complex matrix that no roots can be found in the real number domain,which implies that no phase velocities can be calculated in certain frequency ranges based on current existing algorithms.A solution is to use the real part of the root of the complex number.It is well-known that phase velocities approach about91% of the S-wave velocity of the surface layer when wavelengths are much shorter than the thickness of the surface layer.The later model,however,results in that phase velocities in a high-frequency range,calculated using the current algorithms,approach a velocity associated with the S-wave velocity of the low-velocity layer NOT the surface layer.A solution to this problem is to use an equivalent layer model to calculate phase velocities when wavelengths are shorter than certain threshold (around 2h,h is the total thickness of the layers on the top of the low-velocity layer).The algorithm that we newly developed can handle any arbitrary velocity models,which is the foundation of high-frequency Rayleigh-wave methods and is critical to near-surface applications.Non-geometric wave exists uniquely in near-surface materials,especially in unconsolidated sediments.It occurs in near-offsets in high-frequency Rayleigh data.It is valuable for a quick and accurate estimation of S-wave velocity of the surface layer.Our study shows that non-geometric waves are leaky waves and dispersive.Leaky surface wave could cause misidentification when treating the leaky-wave energy as fundamental or higher modes.Such misidentification will result in wrong inversion results.Recently developed Multi-channel Analysis of Love Waves (MALW) is another powerful tool in determining near-surface S-wave velocities.Unlike Rayleigh waves,the dispersive nature of Love waves is independent of P-wave velocity.Approximating SH-wave velocities using MALW in near-surface applications may become more appealing than MASW because it possesses three advantages: 1) Love-wave dispersion curves simpler than Rayleigh waves; 2) Dispersion images of Love-wave energy have a higher signal to noise ratio and more focus than those generated from Rayleigh waves; and 3) Inversion of Love-wave dispersion curves is less dependent on initial models and more stable than Rayleigh waves.
机译:地表波多通道分析(MASW)通过分析高频瑞利波来确定近地表剪切(S)波速度。由于近20年来,该方法在近地表地球物理学和地球技术界越来越受到关注它们的无创,无损,高效和低成本优势。近地地球物理学界将其视为未来最有希望的技术之一。然而,它们面临着与速度异常不规则相关的独特问题。地震,地震学或油气地震勘探中广泛使用的技术或算法无法解决的近地表地质或人造建筑,例如高速公路,地基,大坝,堤坝,码头等。色散曲线的计算现有的算法对于某些特殊的速度模型可能会由于速度逆而失败(低速层顶部是一个高速层),在近地表应用中最常见的是两种速度模型。一个低速的半空间模型,另一个是高速的表面层。前一个模型导致一个复杂的矩阵,在实数域中找不到根,这意味着在某些频率范围内无法计算出相速度解决方案是使用复数根的实部。众所周知,当波长比波长短得多时,相速度接近表面层S波速度的91%。但是,较新的模型会导致高频范围内的相速度(使用当前算法计算)接近与低速层而非表面层的S波速度相关的速度解决此问题的方法是,当波长短于特定阈值时(约2h,h是低速层顶部的各层的总厚度),使用等效层模型来计算相速度。我们新开发的算法可以处理任何速度模型,这是高频瑞利波方法的基础,对近地表应用至关重要。非几何波在近地表材料中特别是存在,特别是在非固结沉积物中它出现在高频瑞利数据的近偏移处,对于快速准确地估计表层的S波速度具有重要意义。我们的研究表明,非几何波是泄漏波且是弥散的。在将漏波能量视为基本模式或更高模式时,可能会导致错误识别。这种错误识别将导致错误的反演结果。最近开发的爱波多通道分析(MALW)是确定近地表S波速度的另一个强大工具与瑞利波不同,洛夫波的色散性质与P波速度无关。在近地表应用中使用MALW近似SH波速度可能变得越来越困难。比MASW更具吸引力,因为它具有三个优点:1)爱情波的频散曲线比瑞利波更简单; 2)与瑞利波产生的色散图像相比,爱波能量的色散图像具有更高的信噪比和更多的聚焦; 3)Love-wave频散曲线的反演与瑞利波相比,对初始模型的依赖性较小,并且更稳定。

著录项

  • 来源
  • 会议地点 Xian(CN)
  • 作者单位

    Subsurface Imaging and Sensing Laboratory, Institute of Geophysics and Geomatics, The China University of Geosciences, Wuhan, China;

    Subsurface Multi-scale Imaging Laboratory, Institute of Geophysics and Geomatics, The China University of Geosciences, Wuhan, China;

    Subsurface Imaging and Sensing Laboratory, Institute of Geophysics and Geomatics, The China University of Geosciences, Wuhan, China;

    Subsurface Imaging and Sensing Laboratory, Institute of Geophysics and Geomatics, The China University of Geosciences, Wuhan, China;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 环境生物学;
  • 关键词

    Rayleigh wave; Love wave; phase velocity calculation; leaky wave; MASW;

    机译:瑞利波爱波;相速度计算;漏波马萨诸塞州;
  • 入库时间 2022-08-26 13:57:12

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号