首页> 外文会议>Internationa conference on environmental and engineering geophysics >Recent Advances in High-Frequency Surface-wave Methods
【24h】

Recent Advances in High-Frequency Surface-wave Methods

机译:最近高频表面波方法的进展

获取原文

摘要

Multi-channel Analysis of Surface Waves (MASW) analyzes high-frequency Rayleigh waves to determine near-surface shear (S)-wave velocities.The method is getting increasingly attention in the near-surface geophysics and geotechnique community in the past 20 years because of its non-invasive,non-destructive,efficient,and low-cost advantages.They are viewed by near-surface geophysics community as one of most promise techniques in the future.However,they face unique problems related to extremely irregular velocity variations in near-surface geology or man-made constructions,for example,highway,foundation,dam,levee,jetty,etc.,which are not solvable by techniques or algorithms widely used in earthquake seismology or oil/gas seismic exploration.Calculation of dispersion curves by existing algorithms may fail for some special velocity models due to velocity inverse (a high-velocity layer on the top of a low-velocity layer).Two velocity models are most common in near-surface applications.One is a low-velocity half space model and the other a high-velocity surface layer.The former model results in a complex matrix that no roots can be found in the real number domain,which implies that no phase velocities can be calculated in certain frequency ranges based on current existing algorithms.A solution is to use the real part of the root of the complex number.It is well-known that phase velocities approach about91% of the S-wave velocity of the surface layer when wavelengths are much shorter than the thickness of the surface layer.The later model,however,results in that phase velocities in a high-frequency range,calculated using the current algorithms,approach a velocity associated with the S-wave velocity of the low-velocity layer NOT the surface layer.A solution to this problem is to use an equivalent layer model to calculate phase velocities when wavelengths are shorter than certain threshold (around 2h,h is the total thickness of the layers on the top of the low-velocity layer).The algorithm that we newly developed can handle any arbitrary velocity models,which is the foundation of high-frequency Rayleigh-wave methods and is critical to near-surface applications.Non-geometric wave exists uniquely in near-surface materials,especially in unconsolidated sediments.It occurs in near-offsets in high-frequency Rayleigh data.It is valuable for a quick and accurate estimation of S-wave velocity of the surface layer.Our study shows that non-geometric waves are leaky waves and dispersive.Leaky surface wave could cause misidentification when treating the leaky-wave energy as fundamental or higher modes.Such misidentification will result in wrong inversion results.Recently developed Multi-channel Analysis of Love Waves (MALW) is another powerful tool in determining near-surface S-wave velocities.Unlike Rayleigh waves,the dispersive nature of Love waves is independent of P-wave velocity.Approximating SH-wave velocities using MALW in near-surface applications may become more appealing than MASW because it possesses three advantages: 1) Love-wave dispersion curves simpler than Rayleigh waves; 2) Dispersion images of Love-wave energy have a higher signal to noise ratio and more focus than those generated from Rayleigh waves; and 3) Inversion of Love-wave dispersion curves is less dependent on initial models and more stable than Rayleigh waves.
机译:表面波(MasW)的多通道分析分析了高频瑞利波,以确定近表面剪切速度。过去20年来,该方法越来越关注近20年的地球物理学和岩土资讯社区,因为其非侵入性,非破坏性,高效和低成本的优势。近地表地球物理界视为未来最新技术之一。然而,他们面临与极其不规则的速度变化相关的独特问题近表面地质或人造的结构,例如,高速公路,基础,大坝,堤坝,码头等,其不可通过广泛用于地震地震学或油/天然气地震勘探的技术或算法来解决。分散曲线划分由于现有算法可能由于速度逆(低速层顶部的高速层)的某些特殊速度模型可能失败.TWO速度模型在近表面应用中最常见。一个是低速半空间模型和另一个高速表面层。前模型导致复杂的矩阵,即在实数域中没有找到根,这意味着可以在某些频率范围内计算不同的阶段速度基于当前现有的算法。解决方案是使用复数的根的实体部分。众所周知,当波长短比较短的阶段速度接近表面层的S波速度的约91%。然而,表面层的厚度。然而,后续模型导致使用当前算法计算的高频范围中的相位速度,接近与低速层的S波速度相关的速度而不是表面层的速度。该问题的解决方案是使用等效层模型来计算当波长短于某些阈值时的相速度(约2小时,H是低速层顶部的层的总厚度)。我们新开发的算法可以处理任何任意速度模型,这是高频瑞利波方法的基础,对近表面应用至关重要。近表面材料中的近几何波,尤其是在未溶解的沉积物中存在。它发生在高频瑞利数据中的近偏移中。它对于表面层的S波速度的快速准确估计是有价值的。我们的研究表明非几何波是漏漏和分散的。曝光的表面波在将泄漏波能量视为基本或更高的模式时可能导致错误识别.SUCH错误识别会导致错误的反转结果。高度开发了爱情波(MALW)的多通道分析是确定近表面S波速度的另一个强大的工具。乌克里瑞利波,爱情波的分散性与p波速度无关。使用近表面应用中使用麦芽的千波波速度可能成为莫e吸引人比masw为,因为它具有三个优点:1)爱波色散曲线比瑞利波更简单; 2)爱波能量的色散图像具有更高的信噪比,比从瑞利波产生的焦点更高; 3)爱波色散曲线的反转依赖于初始模型,比瑞利波更稳定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号