【24h】

NANO-SCALE ENGINEERING OF SURFACES

机译:表面纳米尺度工程

获取原文
获取原文并翻译 | 示例

摘要

Historically, advances in materials synthesis and processing have been pivotal in the emergence of advanced medical technologies. Tissue Engineering (TE) and other organ regenerative techniques depend on the creation of a mechanically well-defined environment (scaffold) that is rich in biomolecular signals to achieve its objectives, namely the growth of functional neo-tissue. The evolution of neo-tissue is governed by material-cellular interactions, which in turn are dictated by surface characteristics such as texture and chemical functionality. To enable predictive outcomes in TE, polymeric fibers and cellular solid scaffolds should be engineered to include the presentation of biomolecular signals. Since information that is introduced on the material surface is processed as biomechanical and biochemical signals through receptors, which are nano-meter sized entities on cell surfaces, it is therefore important that this information be presented on the same length scale as it occurs in nature. A robust, reproducible and simple way to assembly physical and biochemical information therefore needs to be developed. We hypothesized that an assembly of functionalized particles could serve as a versatile tool for imparting texture and chemical functionality on a variety of surfaces. We further hypothesized that nano-scale resolution of physical and chemical information can be achieved using functionalized nanoparticles (FNP) as building blocks. Pre-functionalization allows for the precise control over density and spatial distribution of information on the surface. Using functionalized inorganic oxides; surfaces of hard (stainless steel and titanium) and soft (polyurethane) substrates have been modified so as to impart reproducible texture and chemically derivatizable functionality. These surface modification coatings can be tuned to possess tethered or covalently adsorbed biomolecules such as peptides, growth factors and proteins and can serve as a platform for engineering biomimetic interfaces to modulate cellular behavior toward implants and in scaffolds for TE.
机译:从历史上看,材料合成和加工的进步一直是先进医疗技术兴起的关键。组织工程(TE)和其他器官再生技术依赖于机械定义明确的环境(支架)的创建,该环境富含生物分子信号以实现其目标,即功能性新组织的生长。新组织的进化受物质-细胞相互作用的支配,而物质-细胞的相互作用又由表面特征如质地和化学功能决定。为了在TE中实现预测结果,应对聚合物纤维和细胞固体支架进行工程改造,使其包括生物分子信号的表达。由于引入到材料表面的信息通过接收器作为生物力学和生化信号进行处理,受体是细胞表面上的纳米级实体,因此重要的是,该信息应以与自然界中相同的长度尺度呈现。因此,需要开发一种强大的,可再现的和简单的方式来组装物理和生化信息。我们假设功能化颗粒的组装可以用作在各种表面上赋予纹理和化学功能的多功能工具。我们进一步假设,可以使用功能化的纳米粒子(FNP)作为构建模块来实现物理和化学信息的纳米级分辨率。预功能化可以精确控制表面信息的密度和空间分布。使用功能化的无机氧化物;硬质(不锈钢和钛合金)和软质(聚氨酯)基材的表面已经过修饰,以赋予可重现的质感和化学衍生功能。这些表面改性涂层可以调整为具有束缚或共价吸附的生物分子,例如肽,生长因子和蛋白质,并且可以用作工程仿生界面的平台,以调节朝向植入物和TE支架的细胞行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号