【24h】

RARE EARTH TRANSITION METAL THIN FILMS AND DEVICES

机译:稀土过渡金属薄膜和器件

获取原文
获取原文并翻译 | 示例

摘要

This article reviews the fabrication, characterisation methods and applications of rare earth transition metal films with giant magnetostrictive and soft magnetic properties. Optimised materials could be the base for various microactuators such as microfluidic devices, micromotors, micromirrors or -sensors e.g. for detecting mechanical stresses or magnetic fields. One of the key advantages of magnetostrictive microactuators is seen in the possibility of a remote operation. Examples of possible materials are amorphous Tb_(40)Fe_(60) and Sm_(40)Fe_(60) films and (Tb_(40)Fe_(60)/Co_(50)Fe_(50)) multilayer films, having amorphous TbFe layers and crystalline FeCo layers. The most common deposition method is magnetron sputtering, the influences of the deposition parameters on the film quality will be addressed. Special post deposition treatments 1ike magnetic field annealing are discussed with respect to an achievement of a well defined magnetic anisotropy. The magnetostrictive characterisation of the films is performed using an optical beam deflection method. This method derives the magnetoelastic coupling coefficient which is independent of the Young's modulus of the film. The dependencies of the magnetic and magnetostrictive properties on the multilayer compositions will be explained as well as the temperature dependencies of the magnetostriction of these materials. Optimised (7 nm Tb_(40)Fe_(60) / 9 nm Co_(50)Fe_(50)) multiayer films show a magnetoelastic coupling coefficient of 27 MPa at an external magnetic field of 20 mT and a coercive field of about 2 mT. Further effects like magnetoresistance and the AE-effect are investigated and the correlation to the magnetostrictive effect are presented. The results of the materials development are discussed in view of possible applications which are mainly in the area of microelectromechanical systems (MEMS).
机译:本文综述了具有巨大的磁致伸缩和软磁特性的稀土过渡金属膜的制备,表征方法及其应用。优化的材料可以成为各种微致动器的基础,例如微流体装置,微电机,微镜或传感器。用于检测机械应力或磁场。磁致伸缩微致动器的主要优点之一是可以进行远程操作。可能的材料的示例是具有非晶TbFe的非晶Tb_(40)Fe_(60)和Sm_(40)Fe_(60)膜以及(Tb_(40)Fe_(60)/ Co_(50)Fe_(50))多层膜层和结晶FeCo层。最常见的沉积方法是磁控溅射,将解决沉积参数对薄膜质量的影响。关于良好的磁各向异性的实现,讨论了特殊的后沉积处理(如1ike磁场退火)。膜的磁致伸缩表征是使用光束偏转方法进行的。该方法得出磁弹性耦合系数,该系数与薄膜的杨氏模量无关。将解释磁性和磁致伸缩性能对多层组合物的依赖性以及这些材料的磁致伸缩的温度依赖性。优化的(7 nm Tb_(40)Fe_(60)/ 9 nm Co_(50)Fe_(50))多层膜在20 mT的外部磁场和约2 mT的矫顽力下显示出27 MPa的磁弹性耦合系数。研究了磁阻和AE效应等其他效应,并提出了与磁致伸缩效应的相关性。鉴于可能的应用(主要在微机电系统(MEMS)领域)中讨论了材料开发的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号