【24h】

MAGNETOSTRICTION AND SPIN-FLOPPING OF UNIAXIALLY COMPRESSED ANTIFERROMAGNETS

机译:单轴压缩抗铁磁网的磁致伸缩和自旋

获取原文
获取原文并翻译 | 示例

摘要

1. Magnetostriction of MnF_2 is determined by the interactions of two types: the exchange and anisotropic ones. Their contributions may be separated. The absolute value of exchange interaction grows at hydrostatic compression which agrees with an increase of the Neel tempearture at hydrostatic pressure and with volume reduction of the crystal below T_N resulted from magnetic ordering. Magnetic anisotropy of MnF_2 has purely magnetodipole origin. 2. Indirect exchange interaction decreases as R~(-14) where R s the distance between the ions Mn~(2+) and F. The dependence of exchange interaction on angle φ, which is composed by the bond-lines in the chains Mn~(2+)―F ―Mn~(2+), is described semiempiricaly by a function cosφ. So the relationship between the indirect exchange interaction and the lattice characteristics R and φ is as follows: W~R~(-14) cosφ. 3. Uniaxial pressure effect on the critical field of spin-flop in α-Fe_2O_3 is explained by a lattice strain dependence of magnetic anisotropy. The calculated derivatives of magnetodipole interactions on strain do not explain the observed dependence H_c(p_(33)). The strain dependence of the spin-orbit contribu ion in energy of magnetic anisotropy determines both the value and the sign of the magnetoelastic properties of hematite Fe_2O_3. 4. Investigation of uniaxial compression effect on the critical field H_c has revealed the sharp dependence of anisotropy energy on pressure for Cr_2O_3. The effect excludes the trivial explanation by the peculiarities of magnetodipole interactions. It is attributed to the characteristics of spin orbit-coupling in this crystal. 5. Magnetoelastic properties of Cr_2O_3 are determined by spin-orbit coupling which is the source both of the single-ion anisotropy and of the exchange interaction anisotropy. The total anisotropy energy is the sum of the significantly higher components, characterized by the close magnitudes but of the opposite sign. Even their small variation with crystal deformation may result in a drastic changes of the low total energy. 6. The strain jumps in Cr_2O_3 and MnF_2 at phase transition in the field H_c on the one hand and the independently measured derivatives dH/dσ_(33) on the other are in agreement with the thermodynamic equation, which relates them along the curve of phase equilibrium. 7. Some similarities with the superconductors are traced.
机译:1. MnF_2的磁致伸缩是由两种相互作用决定的:交换和各向异性。他们的贡献可能分开。交换相互作用的绝对值在静水压力下增长,这与在静水压力下尼尔温度的增加以及由磁有序作用导致晶体在T_N以下的体积减小相吻合。 MnF_2的磁各向异性具有纯磁偶极子起源。 2.间接交换相互作用随着R〜(-14)的减小而减小,其中R s是离子Mn〜(2+)与F之间的距离。交换相互作用对角度φ的依赖性,它由链中的键合线组成Mn〜(2+)〜F ―Mn〜(2+)通过函数cosφ进行半经验描述。因此,间接交换相互作用与晶格特性R和φ之间的关系为:W〜R〜(-14)cosφ。 3.用各向异性的晶格应变解释了α-Fe_2O_3中单轴压力对自旋翻转临界场的影响。计算得出的磁偶极相互作用对应变的导数不能解释观察到的依赖性H_c(p_(33))。自旋轨道贡献离子在磁各向异性能量中的应变依赖性决定了赤铁矿Fe_2O_3的磁弹性性质的值和符号。 4.单轴压缩对临界场H_c的影响研究表明,Cr_2O_3的各向异性能量对压力的强烈依赖性。由于磁偶极相互作用的特殊性,该效应排除了琐碎的解释。这归因于该晶体的自旋轨道耦合特性。 5. Cr_2O_3的磁弹性性质是通过自旋轨道耦合确定的,自旋轨道耦合是单离子各向异性和交换相互作用各向异性的来源。总各向异性能是明显更高的分量之和,其特征是幅度接近,但符号相反。即使它们随晶体变形的微小变化也可能导致低总能量的急剧变化。 6.一方面,在磁场H_c的相变处Cr_2O_3和MnF_2的应变跃变,另一方面,独立测量的导数dH /dσ_(33)与热力学方程式一致,该方程沿相线关系平衡。 7.可以追溯到与超导体的一些相似之处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号