【24h】

PHOTOSYSTEM II-BASED BIOSENSORS FOR PHYTOREMEDIATION

机译:基于PHOTOSYSTEM II的植物修复生物传感器

获取原文
获取原文并翻译 | 示例

摘要

Phenylurea, triazine and diazine represent economically very important compounds since they are used in chemical, pharmaceutical and agricultural industries. Although new herbicides are now available, they still represent the basic products for weed control. All the compounds of these classes constitute about 40 % of all herbicides used at present in agriculture, amounting to thousands of tons all over the world. These compounds are absorbed through the roots and then translocated via the xylem to the leaves. Some of these herbicides are directly absorbed by the leaves. They act by inhibiting photosynthesis at the level of the photosystem II-dependent electron transfer and further block production of ATP and NADPH. In soils, these compounds are quite persistent and they are adsorbed on soil colloids and on organic substances in proportion to the cation exchange capacity of these soil constituents. Bioremediation by photosynthetic plants (phytoremediation) is a well-established method to recover herbicide-polluted soils. The ideal plant for phytoremediation should exhibit the following characteristics: (ⅰ) be resistant to the herbicides, (ⅱ) to allow herbicide translocation to the leaf: (ⅲ) to be able to degrade the herbicide. We can distinguish naturally resistant plants and mutants of sensitive species. In naturally resistant plants the mechanisms of resistance include a slow translocation into the chloroplast, high protein repair turnover, immobilization and detoxication by endogenous enzymes through conjugation and/or degradation. Glutathione S-transferases are involved in the detoxication of herbicides. Often, more than one mechanism is active at the same time. Moreover, prolonged agronomic use of PSII inhibitors, specifically triazine herbicides, has resulted in the evolution of mutants of sensitive species. In this case, the predominant basis for resistance is a single nucleotide substitution in the chloroplast psbA gene encoding the D1 protein, which precludes the binding of herbicide to the protein. However, resistance of mutated biotypes has also been attributed to modifications in the activities of the glutathione enzyme.
机译:苯脲,三嗪和二嗪在经济上非常重要,因为它们用于化学,制药和农业行业。尽管现在有新的除草剂,但它们仍是控制杂草的基本产品。这些类别的所有化合物构成了目前农业上使用的所有除草剂的约40%,全球总量达数千吨。这些化合物通过根部吸收,然后通过木质部转运到叶子。这些除草剂中的一些直接被叶子吸收。它们通过抑制光合作用II依赖的电子转移水平的光合作用而起作用,并进一步阻止ATP和NADPH的产生。在土壤中,这些化合物具有很强的持久性,它们与这些土壤成分的阳离子交换能力成比例地吸附在土壤胶体和有机物质上。光合植物的生物修复(植物修复)是一种成熟的回收除草剂污染土壤的方法。理想的植物修复植物应表现出以下特征:(ⅰ)对除草剂有抗性,(ⅱ)使除草剂易位至叶片:(ⅲ)能够降解除草剂。我们可以区分天然抗性植物和敏感物种的突变体。在天然抗性植物中,抗性的机制包括缓慢转移到叶绿体中,高蛋白修复更新,通过结合和/或降解被内源酶固定和解毒。谷胱甘肽S-转移酶参与除草剂的脱毒。通常,同时激活多个机制。而且,长时间在农业上使用PSII抑制剂,特别是三嗪除草剂,导致了敏感物种突变体的进化。在这种情况下,抗性的主要基础是编码D1蛋白的叶绿体psbA基因中的单个核苷酸取代,这排除了除草剂与该蛋白的结合。然而,突变的生物型的抗性也归因于谷胱甘肽酶活性的改变。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号