首页> 外文会议>NATO Advanced Research Workshop on Super-Intense Laser-Atom Physics Sep 24-30, 2000 Han-sur-Lesse, Belgium >3-D NUMERICAL CALCULATIONS OF LASER ATOM INTERACTIONS- Subrelativistic and weakly relativistic regime
【24h】

3-D NUMERICAL CALCULATIONS OF LASER ATOM INTERACTIONS- Subrelativistic and weakly relativistic regime

机译:激光原子相互作用的3-D数值计算-亚相对论和弱相对论

获取原文
获取原文并翻译 | 示例

摘要

Laser-atom interactions at routinely used high laser intensity have defied a complete numerical description because of the very large quiver mo-menta and excursion amplitudes of the electron in the laser field. For nuclear charge Z, laser intensity I, and frequency ω the dimensions of the bound states are ~1/Z while the quiver motion covers distances of ∝ I~(1/2)/ω~2. When I approaches one atomic unit in a Ti:Sapphire laser of λ = 800 nm ≈ 0.057 a.u., the quiver amplitude exceeds atomic dimensions by 300Z, making the simultaneous description of elect ron-ion rescattering and non-bound electronic motion exceedingly difficult Models have stepped in and provided essential plysical insight. Analytic and semi-analytic calculations based on the strong field approximation (SFA) were able to explain experin ental data in great detail, in spite of the fact that several important approximations are made in these models. Numerical calculations were performed for one- and two-dimensional models. From all these calculations a generally accepted picture of strong laser-atom interactions has emerged: an electron is set free from the atom with low initial velocity, it s accelerated in the laser field with hardly any influence of the ionic potential, where the free motion is only disturbed, when the electron happens to return to the nucleus one or several times. If electron velocities become comparable to the velocity of light, the magnetic field component of the laser field Makes itself felt by pushing the electron into the direction of laser propagat on. At present theory cannot give definite answers to the following questions: What is the initial momentum spectrum after release of the electron ? What is the influence of the Coulomb potential on the non-bound electronic motion, is there "Coulomb focusing" of the electronic motion ? How are harmonic generation and non-sequential ionization affected by the suppression of rescattering, when the electron drifts away due to magnetic field effects ? These questions motivate our effort to integrate the successful ideas of the SFA into a complete numerical description of intense laser-atom interaction. In its present form, the method is capable of solving the time-dependent Schroedinger equation for an atom in fields up to 10~(17)W/cm~2 at the Ti:Sapphire wave length of 800 nm. The necessary extensions to include lowest order non-dipole effects will be discussed in detail.
机译:由于激光场中电子的颤动动量和电子的偏移幅度非常大,因此通常使用的高激光强度下的激光-原子相互作用已无法提供完整的数值描述。对于核电荷Z,激光强度I和频率ω,束缚态的尺寸为〜1 / Z,而颤动运动覆盖的距离为of I〜(1/2)/ω〜2。当我在λ= 800 nm≈0.057 au的Ti:Sapphire激光器中接近一个原子单位时,颤动幅度超过原子尺寸300Z,这使得同时描述电子离子散射和非束缚电子运动变得非常困难。介入并提供了基本的物理洞察力。尽管基于强场近似(SFA)的分析和半分析计算能够很好地解释实验数据,但是在这些模型中进行了一些重要的近似计算。对一维和二维模型进行了数值计算。通过所有这些计算,已经出现了公认的强激光-原子相互作用的图片:电子以较低的初始速度从原子中释放出来,在激光场中几乎不受离子电势的影响而被加速。仅当电子碰巧一次或多次返回原子核时,才会受到干扰。如果电子速度变得可与光速相媲美,则通过将电子推向激光传播的方向来使激光场的磁场分量感觉到自己。目前,理论上不能对以下问题给出确切的答案:电子释放后的初始动量谱是多少?库仑电势对非约束电子运动有什么影响,电子运动是否存在“库仑聚焦”?当电子由于磁场效应而漂移时,抑制重散射如何影响谐波的产生和非顺序电离?这些问题促使我们努力将SFA的成功构想整合到强烈的激光-原子相互作用的完整数值描述中。在目前的形式中,该方法能够在Ti:Sapphire波长为800 nm的情况下求解场在10〜(17)W / cm〜2范围内的原子的时变Schroedinger方程。将详细讨论包括最低阶非偶极效应的必要扩展。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号