首页> 外文会议>Nanosensing: Materials and Devices >Quantum dot detectors for mid-infrared sensing: Bias-controlled spectral tuning and matched filtering
【24h】

Quantum dot detectors for mid-infrared sensing: Bias-controlled spectral tuning and matched filtering

机译:用于中红外传感的量子点检测器:偏置控制的频谱调谐和匹配滤波

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Quantum-dot infrared photodetectors (QDIPs), based on intersubband transitions in nanoscale self-assembled dots, are perceived as a promising technology for mid-infrared-regime sensing since they are based on a mature GaAs technology, are sensitive to normal incidence radiation, exhibit large quantum confined stark effect that can be exploited for hyperspectral imaging, and have lower dark currents than their quantum-well counterparts. High detectivity (D* = 10~(11) cmHz~(1/2)/Watt at 9 μm) QDIPs have been recently shown to exhibit broad spectral responses (~2 μm FWHM) with a bias-dependent shift in their peak wavelengths. This controllable, bias-dependent spectral diversity, in conjunction with signal-processing strategies, allows us to extend the operation of the QDIP sensors to a new modality that enables us to achieve: (1) spectral tunability (single- or multi-color) in the range 2-12 μm in the presence of the QDIP's dark current; and (2) multispectral matched filtering in the same range. The spectral tuning is achieved by forming an optimal weighted sum of multiple photocurrent measurements, taken of the object to be probed, one for each bias in a set of prescribed operational biases. For each desired spectral response, the number and values of the prescribed biases and their associated weights are tailored so that the superposition response is as close as possible, in the mean-square-error sense, to the response of a sensor that is optically tuned to the desired spectrum. The spectral matching is achieved similarly but with a different criterion for selecting the weights and biases. They are selected, in conjunction with orthogonal-subspace-projection principles in hyperspectral classification, to nullify the interfering spectral signatures and maximize the signal-to-noise ratio of the output. This, in turn, optimizes the classification of the objects according to their spectral signatures. Experimental results will be presented to demonstrate the QDIP sensor's capabilities in these new modalities. The effect of dark-current noise on the spectral-tuning capability is particularly investigated. Examples of narrowband and wideband multispectral photocurrent synthesis as well as matched filtering are presented.
机译:量子点红外光电探测器(QDIP)基于纳米级自组装点中的子带间跃迁,被认为是用于中红外区域感测的有前途技术,因为它们基于成熟的GaAs技术,对法向入射辐射敏感,表现出可用于高光谱成像的大量子受限斯塔克效应,并且暗电流低于其量子阱对应物。高探测灵敏度(在9μm下D * = 10〜(11)cmHz〜(1/2)/ Watt)QDIPs表现出较宽的光谱响应(〜2μmFWHM),并且其峰值波长具有偏差相关的偏移。这种可控的,与偏差相关的光谱多样性以及信号处理策略使我们能够将QDIP传感器的操作扩展到一种新的方式,从而使我们能够实现:(1)光谱可调性(单色或多色)在存在QDIP暗电流的情况下,范围为2-12μm; (2)同一范围内的多光谱匹配滤波。通过形成多个光电流测量值的最佳加权总和来实现光谱调谐,该测量值是对要探测的对象进行的,一组规定的操作偏差中的每个偏差都对应一个。对于每个所需的光谱响应,调整规定的偏差的数量和值及其关联的权重,以便在均方误差的意义上,叠加响应尽可能接近光学调谐的传感器的响应到所需的光谱。相似地实现光谱匹配,但是使用不同的准则来选择权重和偏差。在高光谱分类中结合正交子空间投影原理对它们进行选择,以消除干扰的光谱特征并最大化输出的信噪比。这进而根据对象的光谱特征优化了对象的分类。将提供实验结果以证明QDIP传感器在这些新模式中的功能。特别研究了暗电流噪声对频谱调谐能力的影响。给出了窄带和宽带多光谱光电流合成以及匹配滤波的示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号