首页> 外文会议>Nanomechanical testing in materials research and development VI >MICROCOMPRESSION HIGH CYCLE FATIGUE TESTS UP TO 10 MILLION CYCLES
【24h】

MICROCOMPRESSION HIGH CYCLE FATIGUE TESTS UP TO 10 MILLION CYCLES

机译:微压缩高循环疲劳测试,可达一千万次循环

获取原文
获取原文并翻译 | 示例

摘要

Nanomechanical tests are moving beyond hardness and modulus to encompass host of different mechanical properties like strain rate sensitivity, stress relaxation, creep, and fracture toughness by taking advantage of focused ion beam milled geometries. Adding high cycle fatigue to this list will be useful to extend the gamut of properties studied at the microanoscale. However, this presents inherent challenges like low oscillation frequencies, long duration of tests and large thermal drift when attempted with standard indenters. This presentation will report, for the first time, the development of micropillar compression-compression high cycle fatigue tests going up to 10 million cycles. This has been made possible by the development of a novel piezo-based nanoindentation technique that allows accessing extremely high strain rates (>10~4 s~(-1)) and high oscillation frequencies (up to 10 kHz). The associated instrumentation and technique development, design of the fatigue tests at the micron scale, data analysis methodology, experimental protocol and challenges will be discussed. Validation data on single crystal silicon, a reference material, will be presented to demonstrate the reliability of the designed high cycle fatigue tests. Finally, case studies of compression-compression high cycle micropillar fatigue on nanostructured materials will be presented and their results will be discussed in light of existing literature data, particularly the operative deformation mechanism(s). The convolution of time dependent plasticity in such tests will also be addressed. It is hoped that this study will pave way for routine high cycle fatigue tests of metals at the micron scale and provide clues for designing a similar indentation fatigue test.
机译:纳米力学测试已经超越了硬度和模量,通过利用聚焦离子束铣削的几何形状,涵盖了许多不同的机械性能,例如应变率敏感性,应力松弛,蠕变和断裂韧性。在此列表中增加高周疲劳将有助于扩展在微米/纳米尺度上研究的性能范围。但是,这会带来固有的挑战,例如,使用标准压头时,振荡频率低,测试时间长且热漂移大。本演讲将首次报告微柱压缩-压缩高循环疲劳试验的发展,该试验可达到1000万次循环。通过开发一种新颖的基于压电的纳米压痕技术,使之成为可能,该技术允许获得极高的应变速率(> 10〜4 s〜(-1))和高振荡频率(高达10 kHz)。将讨论相关的仪器和技术发展,微米级疲劳测试的设计,数据分析方法,实验规程和挑战。将提供参考材料单晶硅的验证数据,以证明所设计的高周疲劳测试的可靠性。最后,将介绍在纳米结构材料上进行压缩-压缩高周微柱疲劳的案例研究,并根据现有文献数据,特别是操作变形机理对结果进行讨论。这种测试中与时间有关的可塑性的卷积也将得到解决。希望这项研究将为微米级金属的常规高周疲劳试验铺平道路,并为设计类似的压痕疲劳试验提供线索。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号