首页> 外文会议>Conference on nanomechanical testing in materials research and development >IN-SITU MICROCOMPRESSION HIGH CYCLE FATIGUE TESTS: UP TO 1KHZ FREQUENCIES AND 10 MILLION OSCILLATION CYCLES
【24h】

IN-SITU MICROCOMPRESSION HIGH CYCLE FATIGUE TESTS: UP TO 1KHZ FREQUENCIES AND 10 MILLION OSCILLATION CYCLES

机译:原位微压缩高周疲劳测试:高达1KHZ的频率和1000万次的振动周期

获取原文

摘要

Nanomechanical tests are moving beyond hardness and modulus to encompass host of different mechanical properties like strain rate sensitivity, stress relaxation, creep and fracture toughness by taking advantage of focused ion beam milled geometries and well known stress state during testing. Adding high cycle fatigue (HCF) properties to this list will be useful to extend the gamut of properties studied at the microanoscale. There have been several reports of repeated impact and sinus mode (also referred to as "continuous stiffness mode") nanoindentation tests for studying the contact fatigue properties of films and coatings. Though promising for studying contact fatigue properties, these measurements suffer from low oscillation frequencies (less than ~ 50 Hz) and, consequently, long duration tests. Merle et al. reported micropillar compression-compression fatigue tests on nanocrystalline Cu at 40Hz and required ~ 7 hours to reach 1 million cycles. For a technique like nanoindentation that typically comprises of thermal drift rates of ~ 3nm/min at room temperature, this amounts to a total displacement drift of 1.2μm over the entire duration of the test (7 hours). Therefore, pushing the frequencies of sinus oscillation tests higher seems to be the key towards minimizing artefacts of measurements and to reach high cycle contact fatigue regime in shorter time spans. This presentation will report the development of micropillar HCF tests with oscillation frequencies up to 1kHz and compression-compression fatigue tests up to 10 million cycles. Micropillar HCF tests performed on single crystal silicon (reference sample, does not exhibit fatigue at high frequencies) showed no change in unloading stiffness over 10 million cycles, suggesting the reliability of the developed experimental technique. The associated instrumentation and technique development, design of the fatigue tests at the micron scale, data analysis methodology, experimental protocol and challenges will be discussed. Compression-compression high cycle micropillar fatigue of nanocrystalline nickel will be presented and the experimental results will be discussed in light of existing literature data, particularly the operative deformation mechanism(s). The fatigue tests were performed both below and above the 0.2% offset yield strength. Prolonged fatigue tests resulted in grain growth and microstructural changes in nanocrystalline nickel. The associated changes in mechanical deformation data (unloading stiffness, load and displacement amplitudes) will be discussed. The convolution of time dependent plasticity in such tests will be addressed by comparing both load and displacement controlled fatigue tests at high frequencies. It is hoped that this study will pave way for routine high cycle fatigue tests of metals at the micron scale and provide clues for designing similar indentation based fatigue tests.
机译:纳米力学测试已经超越了硬度和模量,通过利用聚焦离子束铣削的几何形状和测试过程中众所周知的应力状态,涵盖了许多不同的机械性能,例如应变率敏感性,应力松弛,蠕变和断裂韧性。将高循环疲劳(HCF)特性添加到此列表将有助于扩展在微米/纳米级研究的特性的色域。已经有重复的冲击和正弦波模式(也称为“连续刚度模式”)纳米压痕测试的报告,用于研究薄膜和涂层的接触疲劳性能。尽管这些方法有望用于研究接触疲劳性能,但它们的振荡频率较低(小于〜50 Hz),因此需要进行长时间的测试。梅尔(Merle)等人。报道了在40Hz的纳米晶Cu上进行微柱压缩-压缩疲劳测试,需要大约7个小时才能达到一百万次循环。对于像纳米压痕这样的技术,在室温下通常包含约3nm / min的热漂移速率,在整个测试过程(7小时)中,总位移漂移为1.2μm。因此,将窦性振动测试的频率推高似乎是最小化测量伪影并在更短的时间范围内达到高循环接触疲劳状态的关键。本演讲将报告振动频率高达1kHz的微柱HCF测试的发展以及高达1000万次循环的压缩-压缩疲劳测试。在单晶硅上进行的微柱HCF测试(参考样品,在高频率下不显示疲劳)表明,在1000万次循环中,卸载刚度没有变化,这表明所开发实验技术的可靠性。将讨论相关的仪器和技术开发,微米级疲劳测试的设计,数据分析方法,实验规程和挑战。将介绍纳米晶镍的压缩-压缩高循环微柱疲劳,并根据现有文献数据,特别是操作变形机理,对实验结果进行讨论。疲劳试验在0.2%偏移屈服强度以下和以上进行。长时间的疲劳测试导致纳米晶镍的晶粒长大和微观结构变化。将讨论机械变形数据(卸载刚度,载荷和位移幅度)的相关变化。通过比较高频下的载荷和位移控制疲劳试验,可以解决这类试验中随时间变化的塑性的卷积问题。希望这项研究将为微米级金属的常规高周疲劳测试铺平道路,并为设计类似的基于压痕的疲劳测试提供线索。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号