首页> 外文会议>Nanomechanical testing in materials research and development VI >A NEW TYPE OF SUPERELASTIC AND SHAPE MEMORY MATERIALS: THCR_2SI_2-STRUCTURED NOVEL INTERMETALLC COMPOUNDS AT SMALL LENGTHS SCALES
【24h】

A NEW TYPE OF SUPERELASTIC AND SHAPE MEMORY MATERIALS: THCR_2SI_2-STRUCTURED NOVEL INTERMETALLC COMPOUNDS AT SMALL LENGTHS SCALES

机译:一种新型的超弹性形状记忆材料:THCR_2SI_2结构的新型金属间化合物,小长度标度

获取原文
获取原文并翻译 | 示例

摘要

Crystalline, superelastic materials typically exhibit large recoverable strains due to the ability of the material to undergo a reversible phase transition between martensite and austenite phases. Applicable to various alloys, ceramics and intermetallic compounds, this reversible transition serves as a general mechanism for superelasticity and shape memory effect. Recently, we noticed that ThCr_2Si_2-structured intermetallic compounds exhibit a reversible phase transition between a tetragonal (or orthorhombic) phase to a collapsed tetragonal phase under compression along c-axis of the unit cell by making and breaking Si-Si type bonds. This process has nothing to do with martensitic transformation. This unique reversible phase transformation process motivated us to investigate their potential as a superelastic and shape memory material. In this study, we studied CaFe_2As_2, which is one of ThCr_2Si_2-structured intermetallic compounds and has been extensively studied in the field of solid-state physics due to its remarkable pressure sensitive electronic, magnetic and superconducting properties. Millimeter-sized single crystals were grown by Sn-flux solution growth technique, and micropillar compression was performed along c-axis to characterize their mechanical behavior. We confirmed CaFe_2As_2 exhibits over 3 GPa strength and over 13% recoverable strain, both of which lead to the ultrahigh elastic energy storage and release 10-1000 times higher than that of conventional high strength materials. Furthermore, we found the exceptional repeatability of cyclic deformation and superior fatigue resistance, compared to shape memory ceramics, which is known as the current state-of-the-art shape memory material. Furthermore, our in-situ cryogenic neutron scattering experiment under pressure showed that CaFe_2As_2 exhibits linear shape memory effect below 100 K by restoring the original orthorhombic phase from the collapsed-tetragonal phase. This ultra-low temperature shape memory effect could be used to develop a cryogenic linear actuation and sensor technology for deep space exploration. Note that our observation is only one manifestation among over 400 ThCr_2Si_2-type intermetallic compounds, all of which would undergo the same phase transformation process. Thus, we believe that our results will represent a paradigm shift in the area of superelastic and shape memory materials with a new phase transformation mechanism, enable an innovative design of cryogenic linear actuators, sensors, and switching devices in extremely cold environments, and more broadly, suggest a mechanistic path to a whole new class of shape memory materials.
机译:由于材料具有在马氏体和奥氏体相之间经历可逆相变的能力,结晶的超弹性材料通常表现出较大的可恢复应变。可逆转变适用于各种合金,陶瓷和金属间化合物,是超弹性和形状记忆效应的一般机理。最近,我们注意到,通过形成和破坏Si-Si型键,ThCr_2Si_2结构化的金属间化合物在沿晶胞c轴压缩的情况下,在四方(正交)相至塌陷的四方相之间表现出可逆相变。该过程与马氏体转变无关。这种独特的可逆相变过程促使我们研究它们作为超弹性和形状记忆材料的潜力。在这项研究中,我们研究了CaFe_2As_2,它是ThCr_2Si_2结构的金属间化合物之一,由于其出色的压敏电子,磁性和超导性质而在固态物理学领域进行了广泛的研究。通过Sn-flux溶液生长技术生长毫米大小的单晶,并沿c轴执行微柱压缩以表征其机械行为。我们确认CaFe_2As_2表现出超过3 GPa的强度和超过13%的可恢复应变,这两者都导致超高弹性能量存储,并且释放的能量是传统高强度材料的10-1000倍。此外,与形状记忆陶瓷相比,我们发现其具有出色的循环变形重复性和出色的抗疲劳性,后者被称为当前最先进的形状记忆材料。此外,我们在压力下的原位低温中子散射实验表明,CaFe_2As_2通过从塌陷的四方相中恢复原始的正交相,在100 K以下具有线性形状记忆效应。这种超低温形状记忆效应可用于开发深空探测的低温线性致动和传感器技术。请注意,我们的观察只是400多种ThCr_2Si_2型金属间化合物中的一种表现形式,它们都将经历相同的相变过程。因此,我们相信我们的结果将代表一种具有新的相变机制的超弹性和形状记忆材料领域的范式转变,使低温线性致动器,传感器和开关设备能够在极端寒冷的环境中进行创新设计,并且更广泛地提出了一条通往全新的形状记忆材料类的机械路径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号