首页> 外文学位 >Nanoscale studies of shape memory and superelastic properties of dual-phase shape memory alloys.
【24h】

Nanoscale studies of shape memory and superelastic properties of dual-phase shape memory alloys.

机译:纳米尺度研究双相形状记忆合金的形状记忆和超弹性。

获取原文
获取原文并翻译 | 示例

摘要

Shape Memory Alloys (SMAs) are 'smart' materials that can achieve high recoverable strains through a reversible phase transformation and have potential applications in many fields such as energy, actuation, and sensing. The transformation between austenite and martensite phases through a shear results in severe stress concentration at grain boundaries, rendering many polycrystalline SMAs inherently brittle. A Grain Boundary Engineering (GBE) method, alternative to traditional methods, has been developed to design dual-phase SMAs in which a ductile, strain accommodating, non-transforming second phase is precipitated in the material, primarily along grain boundaries. This GBE method aims to optimize the morphology and distribution of the second phase by tailoring the alloy composition and thermal processing methods and is shown to be applicable to several SMA systems. Co--Ni--Al is the primary model system selected for experimental studies. In nanoindentation tests using a Berkovich tip (~150 nm radius), enhanced strain recovery, superelastic recovery, and hardness are observed in austenite volume adjacent to its interface with precipitate as compared to other regions tested. A larger radius conospherical tip (~831 nm radius) produces less unrecoverable deformation, thereby enabling a larger portion of material to transform reversibly and is employed in nanoindentation tests in austenite beta adjacent to intergranular precipitate, austenite beta adjacent to bare grain boundaries, and in austenite beta interior. Austenite interfaces adjacent to precipitate have the lowest energy dissipation, the highest hardness, and the highest strain recovery compared to beta regions adjacent to bare grain boundaries or beta interior. The ductile second phase improves superelasticity by plastically accommodating transformation strain from stress-induced martensitic transformation in its adjacent volume, alleviating stress concentration and relieving constraint on transforming austenite. As a result, a greater portion of austenite transforms reversibly and higher strain recovery is observed in austenite adjacent to the second phase. These results enable design of dual-phase microstructures with enhanced ductility, high recoverable strain, and high hardness for several applications, such as mechanical actuation, damping, and those which apply high loads to materials.
机译:形状记忆合金(SMA)是“智能”材料,可通过可逆相变实现高可恢复应变,并在能源,致动和传感等许多领域具有潜在应用。通过剪切,奥氏体和马氏体相之间的转变导致晶界处应力集中,使许多多晶SMA固有地变脆。已经开发出一种可以替代传统方法的晶粒边界工程(GBE)方法来设计双相SMA,其中,主要沿晶粒边界在材料中析出了可塑性,应变适应性,不变形的第二相。这种GBE方法旨在通过调整合金成分和热处理方法来优化第二相的形态和分布,并被证明可用于多种SMA系统。钴镍铝是用于实验研究的主要模型系统。在使用Berkovich尖端(半径约150 nm)的纳米压痕测试中,与其他测试区域相比,在与析出物相邻的界面附近的奥氏体体积中观察到了应变恢复,超弹性恢复和硬度的提高。较大半径的圆锥球形尖端(半径约为831 nm)产生较少的不可恢复的变形,从而使较大部分的材料可逆地变形,并用于纳米压痕测试中,其与晶间析出物相邻的奥氏体β,与裸晶界相邻的奥氏体β和奥氏体Beta内部。与邻近裸晶界或β内部的β区域相比,与析出物相邻的奥氏体界面具有最低的能量耗散,最高的硬度和最高的应变恢复。延展性第二相通过在其相邻体积中塑性地容纳应力诱发的马氏体相变产生的相变应变,减轻应力集中和减轻对相变奥氏体的约束,从而改善了超弹性。结果,大部分奥氏体可逆地转变,并且在与第二相相邻的奥氏体中观察到更高的应变恢复。这些结果使得能够设计出具有增强的延展性,高可恢复应变和高硬度的双相微结构,以用于多种应用,例如机械驱动,阻尼以及那些对材料施加高载荷的应用。

著录项

  • 作者

    Dar, Rebecca Dorothy.;

  • 作者单位

    Rensselaer Polytechnic Institute.;

  • 授予单位 Rensselaer Polytechnic Institute.;
  • 学科 Materials science.;Engineering.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 127 p.
  • 总页数 127
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号