【24h】

Chapter 2 Plasmonics and Ultrasensitive Detection

机译:第2章等离子和超灵敏检测

获取原文
获取原文并翻译 | 示例

摘要

An approach for experimental design in plasmon-enhanced spectroscopy is discussed based on its basic elements: electromagnetic radiation, adsorbed molecule and the metal nanostructure. Optimization of the plasmon enhancement may be achieved by tuning the electromagnetic radiation to take advantage of resonances with molecules and nanostructures. For instance, when the excitation is in resonance with a molecular electronic transition, resonance Raman scattering is observed providing a very efficient scattering with cross section for vibrational transitions several orders of magnitude higher than normal Raman. Tuning the excitation of the nanostructure might depend on the degree of aggregation, or the properties of two and three dimensional array of fabricated nanostructures. Several examples of surface enhanced Raman scattering (SERS), SERS and surface enhanced fluorescence using shell isolated nanoparticles are presented. The experimental results illustrate the remarkable optical properties of metal nanoparticles which are governed by the excitation of localized surface plasmon resonances producing local enhancement of the electromagnetic field. However, each experiment is unique and requires a selection of the setting for each one of the three elements that would lead to the most efficient plasmon enhancement.
机译:基于其基本元素:电磁辐射,吸附分子和金属纳米结构,讨论了等离子体增强光谱实验设计方法。可以通过调节电磁辐射以利用与分子和纳米结构的共振来实现等离子体激元增强的优化。例如,当激发与分子电子跃迁共振时,观察到共振拉曼散射提供了非常有效的散射,该散射具有比正常拉曼高几个数量级的振动跃迁的横截面。调节纳米结构的激发可能取决于聚集的程度,或所制造的纳米结构的二维和三维阵列的特性。给出了使用壳分离的纳米颗粒的表面增强拉曼散射(SERS),SERS和表面增强荧光的几个例子。实验结果表明,金属纳米粒子具有非凡的光学性能,这受局部表面等离子体激元共振的激发控制,从而产生电磁场的局部增强。但是,每个实验都是唯一的,需要选择三个元素中每个元素的设置,这将导致最有效的等离激元增强。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号