首页> 外文会议>Nanobiosystems: Processing, characterization, and applications VI >Improving Energy Transfer in QD-DNA Photonic Networks
【24h】

Improving Energy Transfer in QD-DNA Photonic Networks

机译:改善QD-DNA光子网络中的能量传递

获取原文
获取原文并翻译 | 示例

摘要

There is considerable research in the area of manipulating light below the diffraction limit, with potential applications ranging from information processing to light-harvesting. In such work, a common problem is a lack of efficiency associated with non-radiative losses, e.g., ohmic loss in plasmonic structures. From this point of view, one attractive method for sub-wavelength light manipulation is to use FoErster resonance energy transfer (FRET) between chromophores. Although most current work does not show high efficiency, biology suggests that this approach could achieve very high efficiency. In order to achieve this goal, the geometry and spacing of the chromophores must be optimized. For this, DNA provides an easy means for the self-assembly of these complex structures. With well established ligation chemistries, it is possible to create facile hierarchical assemblies of quantum dots (QDs) and organic dyes using DNA as the platform. These nanostructures range from simple linear wires to complex 3-dimensional structures all of which can be self-assembled around a central QD. The efficiency of the system can then be tuned by changing the spacing between chromophores, changing the DNA geometry such that the donor to acceptor ratio changes, or changing the number of DNA structures that are self-assembled around the central QD. By exploring these variables we have developed a flexible optical system for which the efficiency can be both controlled and optimized.
机译:在处理低于衍射极限的光方面有大量研究,其潜在应用范围从信息处理到光收集。在这样的工作中,一个普遍的问题是缺乏与非辐射损耗(例如,等离子体激元结构中的欧姆损耗)相关的效率。从这个角度来看,一种用于亚波长光操纵的有吸引力的方法是在发色团之间使用FoErster共振能量转移(FRET)。尽管当前大多数工作并未显示出很高的效率,但是生物学认为这种方法可以实现非常高的效率。为了实现该目标,必须优化发色团的几何形状和间距。为此,DNA为这些复杂结构的自组装提供了简便的方法。借助成熟的连接化学,可以使用DNA作为平台来创建量子点(QD)和有机染料的简便分层组件。这些纳米结构的范围从简单的线性导线到复杂的3维结构,所有这些结构都可以围绕中央QD自组装。然后,可以通过改变生色团之间的间距,改变DNA几何形状,使供体与受体的比例发生变化,或改变围绕中央QD自组装的DNA结构的数量,来调节系统的效率。通过探索这些变量,我们开发了一种灵活的光学系统,可以同时控制和优化效率。

著录项

  • 来源
  • 会议地点 San Diego CA(US)
  • 作者单位

    George Mason University, 10910 University Blvd, MS 4E3, Manassas, VA 20110, USA,Center for Bio/Molecular Science and Engineering, 4555 Overlook Ave. SW, Washington DC,20375, USA;

    Center for Bio/Molecular Science and Engineering, 4555 Overlook Ave. SW, Washington DC,20375, USA;

    Division of Electronics Science and Technology, 4555 Overlook Ave. SW, Washington DC,20375, USA;

    George Mason University, 10910 University Blvd, MS 4E3, Manassas, VA 20110, USA,Center for Bio/Molecular Science and Engineering, 4555 Overlook Ave. SW, Washington DC,20375, USA;

    Optical Sciences Division Naval Research Laboratory, 4555 Overlook Ave. SW, Washington DC,20375, USA;

    Optical Sciences Division Naval Research Laboratory, 4555 Overlook Ave. SW, Washington DC,20375, USA;

    Optical Sciences Division Naval Research Laboratory, 4555 Overlook Ave. SW, Washington DC,20375, USA;

    Center for Bio/Molecular Science and Engineering, 4555 Overlook Ave. SW, Washington DC,20375, USA;

    Center for Bio/Molecular Science and Engineering, 4555 Overlook Ave. SW, Washington DC,20375, USA;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Foerster resonance energy transfer; quantum dot; photonic networks;

    机译:福斯特共振能量转移;量子点光子网络;
  • 入库时间 2022-08-26 13:44:26

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号