首页> 外文会议>Modeling and Simulation of Laser Systems II >Gaussian scaling laws for diffraction: top-hat irradiance and Gaussian beam propagation through a paraxial optical train
【24h】

Gaussian scaling laws for diffraction: top-hat irradiance and Gaussian beam propagation through a paraxial optical train

机译:高斯衍射定律:高帽辐照度和高斯光束通过近轴光学系统传播

获取原文
获取原文并翻译 | 示例

摘要

Abstract: 1415@36@A one-to-one correspondence between the parameter spaces of propagated top-hat (plane wave, flat top) irradiance profiles and Gaussian beams has been proposed. The diffractive 'size' of the propagated top hat is estimated by calculating that of an equivalent Gaussian beam with the same Fresnel number. Given the propagation Fresnel number, one also knows the detailed intensity and phase profiles of the propagated top hat within the Gaussian envelope; a library of plots of beam profiles is provided for both rectangular and circular top hats propagated over a large spectrum of Fresnel numbers. For Fresnel numbers less than approximately 10, the Gaussian envelope is shown to enclose roughly 90 percent of the top hat's total power. The formalism thus allows one to perform the simple matrix manipulations of Gaussian beam propagation to determine the propagated top-hat beam envelope and then use the look-up tables of beam profiles to determine the detailed intensity and phase of the plane as it propagates through a paraxial optical train. The equivalent Gaussian method allows one to include lowest order diffraction effects when designing an optical system instead of relying solely on geometrical optics. For beams that are not significantly different from top hats, one can approximate their propagated profiles by using this method with a modified wavelength, lengthened to account for non-ideal beam spreading. Examples include propagation through a focus and a one-to-one imaging system, both encountered in ring resonator designs, and design and implementation of a multiwavelength imaging laser diagnostic optical train. A final example is extension to non-orthogonal optical systems using the analysis of J. A. Arnaud to propagate the Gaussian beam.!
机译:摘要:1415 @ 36 @提出了传播的顶帽(平面波,平顶)辐照度的参数空间与高斯光束之间的一一对应关系。通过计算具有相同菲涅耳数的等效高斯光束的衍射“大小”,可以估算传播的高顶礼帽的“大小”。给定传播菲涅耳数,还可以知道高斯包络线内传播的高顶礼帽的详细强度和相位分布;为在大范围菲涅耳数上传播的矩形和圆形礼帽提供了光束轮廓图库。对于小于约10的菲涅耳数字,高斯信封显示出大约占礼帽总功率的90%。因此,形式主义使人们能够对高斯光束的传播进行简单的矩阵运算,以确定传播的礼帽光束包络,然后使用光束轮廓的查找表来确定平面传播通过一个平面时的详细强度和相位。近轴光学系统。等效的高斯方法允许在设计光学系统时包括最低阶的衍射效应,而不是仅依赖于几何光学。对于与高顶礼帽没有显着差异的光束,可以使用此方法以修改后的波长近似其传播轮廓,并加长以解决不理想的光束扩散问题。例子包括在环形谐振器设计中遇到的通过焦点和一对一成像系统的传播,以及多波长成像激光诊断光学系统的设计和实现。最后一个例子是使用J. A. Arnaud的分析来传播高斯光束,从而扩展到非正交光学系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号