首页> 外文会议>Modeling of Casting, Welding and Advanced Solidification Processes XI vol.1 >MODELING OF MICROSTRUCTURE EVOLUTION IN THE SOLIDIFICATION OF MULTI-COMPONENT ALLOYS USING LEVEL SET METHODS
【24h】

MODELING OF MICROSTRUCTURE EVOLUTION IN THE SOLIDIFICATION OF MULTI-COMPONENT ALLOYS USING LEVEL SET METHODS

机译:用层集方法模拟凝固多组分合金中的微观组织演化

获取原文
获取原文并翻译 | 示例

摘要

A level set method combining features of front tracking methods and fixed domain methods is presented to model microstructure evolution in the solidification of multi-component multiphase alloy systems. Phase boundaries are explicitly tracked by solving the multi-phase level set equations. Diffused interfaces are constructed by extending a small width in both directions from these explicitly tracked phase boundaries. Based on the constructed artificial diffused interfaces, volume-averaging techniques are applied for energy, species and momentum transport. This sacrifice of accuracy by adopting a diffused interface for computational convenience is small considering that the interfaces are still explicitly tracked. By avoiding explicit application of temperature essential boundary conditions on the freezing front, the numerical scheme is energy conserving and the numerical results insensitive to the mesh size. For the numerical analysis of melt flow, a SUPG (streamline-upwind/Petrov-Galerkin), PSPG (pressure stabilizing/Petrov-Galerkin) and DSPG (Darcy stabilizing/ Petrov-Galerkin) stabilized velocity-pressure finite element algorithm is adopted. Microstructure evolution in multi-component alloy systems is solved directly using input from phase diagrams. This avoids the difficulty of parameter identification needed in most diffused interface models, and allows easy application to the solidification of various practical alloy systems. Comparable accuracy is observed to front tracking and phase field models in a number of examples available in the literature. Computational techniques including fast marching and narrow band computing are utilized to speed up the level set computations. Adaptive mesh refinement in the rapidly varying interface region makes the method practical for coupling phenomena in meso- and macro-scales during the solidification process.
机译:提出了一种结合前跟踪方法和固定域方法的特征的水平集方法,以模拟多组分多相合金系统凝固过程中的微观组织演化。通过求解多相水平集方程,可以明确跟踪相界。通过从这些明确跟踪的相位边界在两个方向上扩展一个较小的宽度来构造扩散接口。基于构造的人工扩散界面,将体积平均技术应用于能量,物种和动量传输。考虑到仍然明确跟踪接口,通过采用分散的接口以提高计算便利性而导致的精度损失很小。通过避免在冻结前沿明确应用温度基本边界条件,该数值方案是节能的,并且数值结果对网格尺寸不敏感。为了对熔体流动进行数值分析,采用了SUPG(流线上风/ Petrov-Galerkin),PSPG(压力稳定/ Petrov-Galerkin)和DSPG(Darcy稳定/ Petrov-Galerkin)稳定的速度-压力有限元算法。使用相图的输入直接解决多组分合金系统中的微观结构演变。这避免了大多数扩散界面模型中所需参数识别的困难,并允许轻松地应用于各种实用合金系统的固化。在文献中可用的许多示例中,可以观察到与前跟踪和相场模型可比的准确性。利用包括快速行进和窄带计算在内的计算技术来加快水平集计算。快速变化的界面区域中的自适应网格细化使该方法在凝固过程中实用化以中尺度和宏观尺度耦合现象。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号