首页> 外文会议>Micro/Nanoscale Heat Transfer International Conference 2008 >THREE-DIMENSIONAL ANALYSIS OF FLUID FLOW AND HEAT TRANSFER IN THE MICROCHANNEL HEAT SINK USING ADDITIVE-CORRECTION MULTIGRID TECHNIQUE
【24h】

THREE-DIMENSIONAL ANALYSIS OF FLUID FLOW AND HEAT TRANSFER IN THE MICROCHANNEL HEAT SINK USING ADDITIVE-CORRECTION MULTIGRID TECHNIQUE

机译:导数修正多重网格技术在微通道热沉中流动与传热的三维分析

获取原文
获取原文并翻译 | 示例

摘要

Heat generation from very large-scale integrated (VLSI) circuits increases with the advent of high-density integrated circuit technology. One of the promising techniques is liquid cooling by using microchannel heat sink. Numerical works on the microchannel heat sink in the literature are mostly two dimensional. The purpose of the present study is to develop a three-dimensional analysis procedure to investigate flow and conjugate heat transfer in the microchannel-based heat sink for electronic packaging applications. The micro-heat sink model consists of a 10 mm long silicon substrate, with rectangular microchannels, 57 μm wide and 180 μm deep, fabricated along the entire length. A finite volume numerical code with a multigrid technique, based on additive correction multigrid (AC-MG) scheme, that is a high-performance solver, was developed to solve the steady incompressible laminar Navier-Stokes (N-S) equations, over a colocated Cartesian grid arrangement. The results indicate that thermophysical properties of the liquid can significantly influence both the flow and heat transfer in the microchannel heat sink. Comparison of the numerical results with other published numerical results and experimental data available in the literature for Reynolds numbers less than 200 based on a hydraulic diameter of D_h=86 μm and D_h/L_x<0.01, indicates that the assumption of hydrodynamic, fully developed laminar flow is valid. The current research indicates that the AC-MG acceleration technique is highly efficient, reliable and robust, which makes it feasible for CPU-intensive computations, such as pressure Poisson equations. When compared to the discretized momentum equations, the pressure Poisson equations tend to be very stiff and ill-conditioned, i.e a_p≡∑_(nb) a_(nb) Because of these reasons, solving the pressure Poisson equation is usually the CPU bottle-neck for the incompressible N-S equation system and AC-MG technique is required. With this acceleration technique the residuals of the large-scale algebraic equation system are guaranteed to be continuously driven down to the level of the computer machine round-off error and warrants strong conservations of mass and momentum satisfied over all the control volumes. In this cell centered multigrid algorithm both restriction and prolongation operators are based on piecewise constant interpolation. The accuracy of the prediction has been verified by comparing the results obtained with the numerical and analytical results from the open literature.
机译:随着高密度集成电路技术的出现,超大规模集成电路(VLSI)产生的热量增加。一种有前途的技术是通过使用微通道散热器进行液体冷却。文献中关于微通道散热器的数值研究大多是二维的。本研究的目的是开发一种三维分析程序,以研究电子封装应用中基于微通道的散热器中的流动和共轭传热。微型散热器模型包括一个10毫米长的硅基板,该基板具有沿整个长度制造的矩形微通道,其宽度为57μm,深度为180μm。开发了一种基于多网格技术的有限体积数值代码,该算法基于高性能的求解器加性校正多网格(AC-MG)方案,用于在同一位置的笛卡尔坐标上求解稳态不可压缩层流Navier-Stokes(NS)方程。网格排列。结果表明,液体的热物理性质可以显着影响微通道散热器中的流动和传热。基于D_h = 86μm的水力直径和D_h / L_x <0.01的雷诺数小于200的数值结果与其他已发表的数值结果和文献中提供的实验数据的比较表明,假设为流体动力学的,完全发育的层流流程有效。当前的研究表明,AC-MG加速技术高效,可靠且健壮,这使其可以用于CPU密集型计算,例如压力泊松方程。与离散动量方程相比,压力泊松方程往往非常僵硬且条件恶劣,即a_p≡∑_(nb)a_(nb)由于这些原因,求解压力泊松方程通常是CPU瓶颈-不可压缩NS方程系统的颈部和AC-MG技术是必需的。借助这种加速技术,可以保证将大规模代数方程组的残差连续降低到计算机舍入误差的水平,并保证在所有控制量上都可以满足强烈的质量和动量守恒要求。在这种以细胞为中心的多重网格算法中,限制和延长算子都基于分段常数插值。通过将获得的结果与来自公开文献的数值和分析结果进行比较,验证了预测的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号